

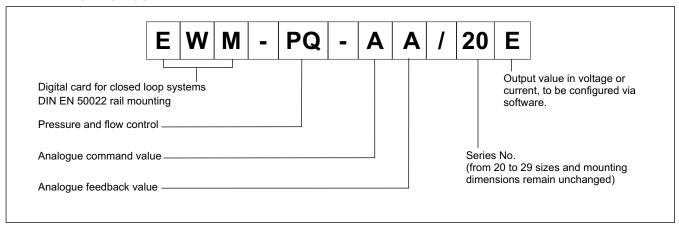
EWM-PQ-AA

DIGITAL CARD FOR PRESSURE/FLOW CONTROL IN CLOSED LOOP SYSTEMS SERIES 20

RAIL MOUNTING TYPE: DIN EN 50022

OPERATING PRINCIPLE

- The EWM-PQ-AA has been developed as a classic p/Q controller but it work well also with high response valves (zero overlap) via analogue command inputs for pressure and flow.
- The p/Q controller automatically switches over between Q and p control modes to assure that the set point limits for pressures has not to exceed.
- The pressure feedback are analogue type.
- The output value, voltage or current type, is configurable via software.
- Card setup via software only, through an on-board USB-B port.


TECHNICAL CHARACTERISTICS

Power supply	V DC	12 ÷ 30 ripple included
Fuse, external:		1A medium time lag
Current consumption:	mA	<100
Pressure command (p)	mA V	4 ÷ 20 (RI = 240 Ω) 0 ÷ 10 (RI = 25 kΩ)
Flow command (Q)	mA V	4 ÷ 20 (RI = 240 Ω) ± 10 (RI = 90 kΩ)
Pressure feedback values	mA V	4 ÷ 20 (RI = 240 Ω) 0 ÷ 10 (RI = 25 kΩ)
Sensor resolution	%	0,003 incl. oversampling
Output values	V mA	\pm 10 (max load 10 mA 2 kΩ) differential 4 \div 20 (max load 390 Ω)
Sample time	ms	1
Interface		USB-B 2.0
Electromagnetic compatibility (EMC) 2004/108/EC		Immunity EN 61000-6-2: 8/2005 Emissions EN 61000-6-4: 6/2007; A1:2011
Housing material		thermoplastic polyamide PA6.6 - combustibility class V0 (UL94)
Housing dimensions	mm	120(d) x 99(h) x 23(w)
Connections		USB-B (2.0) - 4x poles screw terminals - PE direct via DIN rail
Operating temperature range	°C	-20 / +60
Protection degree		IP 20

89 550/115 ED 1/6

1 - IDENTIFICATION CODE

2 - FEATURES OVERVIEW

Controller Functions

- · Analogue Q- and p-command signals
- Classical p/Q controller with pressure limitation (automatic switch over)
- PID-controller with 2 sets of parameters switchable by digital input
- · Data for pressure set in bar
- Ramps for pressure up and down optionally activated by a digital input
- Force / pressure controller with one sensor
- · Differential pressure control with two pressure sensors
- D gain filter to stabilize the control behaviour
- Emergency function for output signal (EOUT)
- · Analogue feedback input
- Flow value (Q) alternative to the analogue input as parameter to be entered via software
- Simple and intuitive scaling and offset of the sensors.

Monitoring functions

- Monitoring error
- Cable break for feedback sensor and current command signal
- 2 digital outputs to read the status

Other characteristics

- Current or voltage output to be set via software
- Card configuration via software, through on-board USB port

3 - FUNCTIONAL SPECIFICATIONS

3.1 - Power supply

This card is designed for 12 to 30 VDC (typical 24 V) of a power supply. This power supply must correspond to the actual EMC standards. All inductivities at the same power supply (relays, valves) must be provided with an over voltage protection (varistors, free-wheel diodes).

It is recommended to use a regulated power supply (linear or switching mode) for the card supply and for the sensors.

3.2 - Electrical protections

All inputs and outputs are protected with suppressor diodes and RC-filters against transient overshoots.

3.3 - Digital Input

The card accepts digital input. The digital input must have a voltage from 12 to 24 V; Low level: <2V, high level >10V. Input resistance 25 k Ω . See the block diagram at paragraph 4 for the electric connections.

3.4 - Pressure command (p)

The card accepts an analogue input signal. The command value can be 0 ÷ 10 V (RI = 25 k Ω) or 4 ÷ 20 mA (RI = 240 Ω).

3.5 - Flow command (Q)

The card accepts an analogue input signal. The command speed can be ± 10 V (RI = 90 k Ω) or 4...12...20 mA (RI = 240 Ω).

3.6 - Feedback values

The card accepts up to two analogue feedback inputs, values can be 0 ÷ 10 V (RI = 25 k Ω) or 4 ÷ 20 mA (RI = 240 Ω).

3.7 - Analogue output values

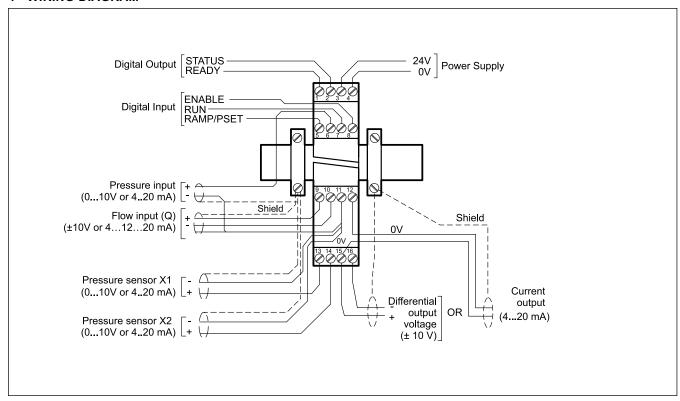
Output values can be in voltage or current, to be configured via software (parameter SIGNAL:U). The same parameter defines the polarity also.

Voltage: ± 10 V Differential output (PIN 15 / PIN 16).

Current: 4 ÷ 20 mA (PIN 15 to PIN 12).

All analogue output have to be wired with screened cables.

3.8 - Digital output


Two digital output are available, STATUS and READY, that are displayed by the READY and A leds on the front panel.

Low level < 2 V High Level > 12 V (max 50 mA).

89 550/115 ED 2/6

4 - WIRING DIAGRAM

DIGITAL INPUT AND OUTPUT

PIN READY output:

General operationality, ENABLE is active and there are no sensor / command errors (by use of 4... 20 mA sensors). This output corresponds with the LED READY.

PIN STATUS output:

2 Error monitoring. The status output will be deactivated if the error is greater than the acceptability range. This output corresponds with the LED A.

PIN RAMP/PSET input:

- According to the setup of the parameter PIN:5, it can be configured as:
 - ramp activation / deactivation
 - switching between the 2 available sets of parameters

PIN RUN input:

7 Controller activation; if the input is OFF and ENABLE is active, the flow command (PIN 9 / 10) is taken over as valve command value.

PIN ENABLE input:

This digital input signal initializes the application. The analogue output is active and the READY signal indicates that all components are working correctly. The Q command signal is controlling the output.

ANALOGUE INPUT

PIN Pressure / force command value (p)
6 range 0 ÷100% of system nominal pressure
corresponds to 0 ÷ 10V or 4 ÷ 20 mA

PIN Flow command value (Q)

9/10 range ±100 % corresponds to ±10V or 4...12...20 mA

PIN Pressure sensor (feedback) value (X1)

13 range 0 ÷ 100% of nominal pressure of sensor corresponds to 0 ÷ 10V or 4 ÷20 mA

PIN Pressure sensor (feedback) value (X2)

14 range 0 ÷ 100% of nominal pressure of sensor corresponds to 0 ÷ 10V or 4 ÷20 mA

ANALOGUE OUTPUT

voltage

PIN Differential output (U)

16/15 ± 100% corresponds to ± 10V differential voltage

current

PIN ±100% corresponds to 4 ÷ 20 mA

12/15

89 550/115 ED 3/6

5 - INSTALLATION

For power supply and solenoid connections are recommended cable sections of 0.75 mm² up to 20 m length, and of 1.00 mm² up to 40m length.

For other connections use cables with a shielded jacket, connected to GND only on the card side.

NOTE: To observe EMC requirements it is important that the control unit electrical connection is in strict compliance with the wiring diagram.

As a general rule, the valve and the electronic unit connection wires must be kept as far as possible from interference sources (e.g. power wires, electric motors, inverters and electrical switches).

Complete protection of the connection wires can be requested in environments with critical electromagnetic interferences.

5.1 Start-up

The module must be mounted and wired with attentions to EMC requirements. A star orientated ground connection should be used when other power consumers are sharing the same power supply. Following points have to be taken in account for wiring:

- Signal cable and power cable have to be wired separately.
- · Analogue signal cables must be shielded.
- Other cables should be shielded in case of strong electrical disturbance (power relays, frequency controlled power driver) or at cable lengths > 3m.

With high frequency EMI inexpensive ferrite elements can be used.

Take in account a separation between the power part (and power cables) and signal part when arrange the areas inside the electrical cabinet. Experience shows us that the area next to the PLC (24 V area) is suitable.

Low impedance between PE "protected earth" and DIN-Rail should be used. Transient interference voltages at the terminals are discharged via DIN-Rail to the local PE. The screens have to be connected directly next to the module via PE terminals.

The power supply should be carried out voltage regulated (i. e. PWM controlled). The low impedance of controlled power supplies facilitates improved interference damping, therefore the signal resolution will be increased.

Switched inductance (relays and solenoids) operating from the same power supply has to be damped by surge protection elements directly by the inductance.

6 - DEVICE SETUP

Card set-up is possible via software only.

The system can be controlled in open loop with the control signal Q, moving the servo cylinder forward and backward, for easy programming of the card and of the system calibration.

6.1 - Software EWMPC/20

The software EWMPC/20 can be easily downloaded from the Duplomatic Oleodinamica website in the section SOFTWARE DOWNLOAD.

To connect the card to a PC or notebook is necessary a standard USB 2.0 cable A – B (standard USB printer cable).

Once connected, the software automatically recognises the card model and shows a table with all the available commands, their parameters, the default setting, the measuring unit and a brief explanation for correct set-up. Some functions like baud rate setting, remote control mode, saving of process data for later evaluation are used to speed up the installation procedure.

The software is compliant with Microsoft OS Windows 7 and 8.

WARNING! For card series 20, the default baud rate to select in the software has changed from 9600 baud to 57600 baud. This is adaptable in OPTION / SETTINGS / INTERFACE.

6.2 - Parameters table

The parameters table is available in English or German. The language is set in the parameters.

The parameter setting can be done at *standard* level, easier, or *expert*, where a greater number of parameters is displayed and can be customized.

For a complete list of the parameters and their settings please refer to the Technical Manual 89550 ETM.

7 - MAIN FEATURES

This module serves to control pressures and forces on hydraulic actuators.

7.1 - Sequence of the positioning

The ENABLE signal initializes the application and error messages are deleted. The READY signal gets activated. The output signal to the control element is enabled. The drive can be controlled by the Q value or input. Setting RUN will start the PID controller.

A dynamic zero-overlap control valve is necessary for p/Q control. If the B-side of the cylinder can not be relieved, pressure in both cylinder sides has to be measured.

The cylinder can be driven in both directions (flow control in open loop) with the analogue Q command input value and limits the max velocity.

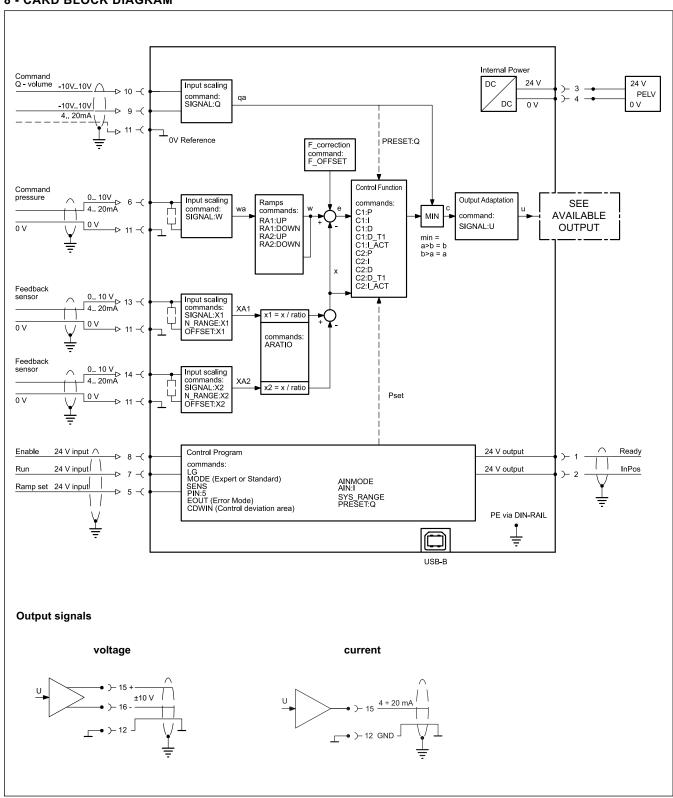
The pressure limitation control function is only active with a positive Q signal with a closed loop function.

The p command value pre-sets the max differential pressure. If this pressure (or force) exceeds the controller reduces the output signal to the valve (also in the negative range), so that the preset pressure will be kept. To go backwards for keeping the force is possible.

The pressure/force control is determined via the analogue inputs X1 and X2. For differential pressure control the actual value is calculated as X1-X2.

The output signal is available as a differential output for connection of control valves with integrated electronics.

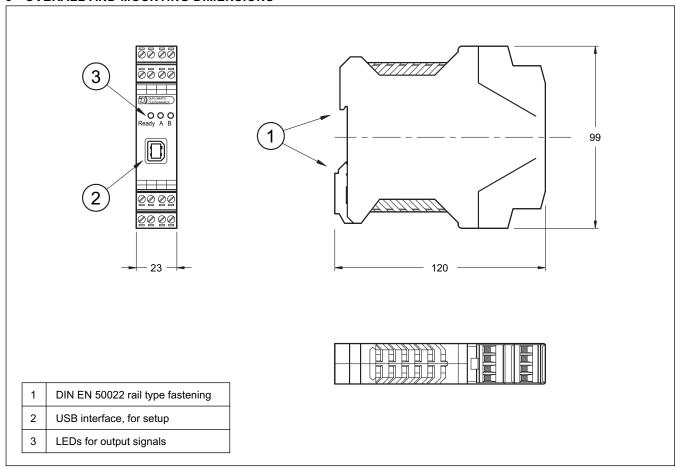
7.2 - Emergency Output (EOUT)


This function is able to set the output at a specific value when a failure occurs (e.g. sensor error or ENABLE disabled). It can be used to move the axis to one of the two end positions with a programmed velocity. The function can be deactivate.

89 550/115 ED 4/6

EWM-PQ-AA

8 - CARD BLOCK DIAGRAM



89 550/115 ED **5/6**

6/6

9 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com