

EWM-SS-DAD

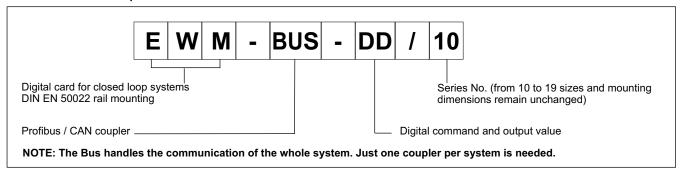
AXIS SYNCHRONIZATION CONTROL FOR SYSTEMS FROM 2 TO 9 AXES WITH PROFIBUS/CAN COMMUNICATION INTERFACE SERIES 11

RAIL MOUNTING TYPE: DIN EN 50022

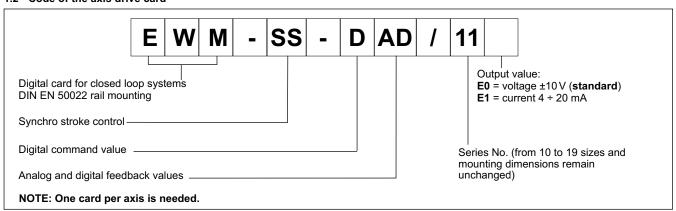
OPERATING PRINCIPLE

- This system for the axis synchronization control consists of an interface PLC Profibus DP and axis control cards with interconnection via CanBus. The control consists of a bus adapter EWM-BUS-DAD per the system and one EWM-SS-DAD module for each axis to be controlled, to be ordered separately.
- The EWM-SS-DAD synchronizes the axes through a position sensor, digital SSI type (a high accuracy) or analogue type.
- The synchronization controller correct the speed of the slave axis. Positioning failures during the movement will increase or reduce the slave axis velocity, so the synchronization failure will be compensated.
- The cards are, programmable only via software, with EWMPC software kit, and a laptop.

TECHNICAL CHARACTERISTICS


Power supply	V DC	24 ÷ 30 ripple included - external fuse 1,0 A
Current consumption	mA	< 350 + sensor power consumption
Command value		via Profibus DP - ID number 1810h
Speed input value		via Profibus DP - ID number 1810h
Feedback value	SSI V mA	digital sensor with SSI interface $0 \div 10 \ (R_{\text{I}} = 25 \ \text{k}\Omega)$ $4 \div 20 \ (R_{\text{I}} = 250 \ \Omega)$
Output value - E0 version - E1 version	V mA	±10 differential (max load 5 mA) 4 ÷ 20 (max load 390 Ω)
Position accuracy		± 2 bits of digital sensor resolution
Interface		RS 232 C
Electromagnetic compatibility (EMC): according to 2004/108/CE standards		Emissions EN 61000-6-3:2005 Immunity EN 61000-6-2:2002
Housing material		thermoplastic polyamide PA6.6 combustibility class V0 (UL94)
Housing dimensions - EWM-SS-DAD - EWM-BUS-DD	mm	114 x 99(h) x 46(w) 120 x 99(h) x 23(w)
Connectors		4x4 poles screw terminals - PE direct via DIN rail
Operating temperature range	°C	-20 / +60
Protection degree		IP 20

89 460/115 ED 1/14



1 - IDENTIFICATION CODES

1.1 - Profibus / CAN coupler code

1.2 - Code of the axis drive card

This electronic module is developed for controlling of hydraulic drives in synchronization. The communication with the PLC is solved by a standard Profibus DP interface.

This system can synchronize up to 9 axes.

A typical repeatable positioning accuracy of > 0.01% with analogue sensors or up to 0.001 mm with digital SSI sensors can be achieved. Proportional valves with integrated electronics (typically with control valves) can be driven by the analogue differential output.

Internal profile generation (acceleration time, max. velocity and stroke depended deceleration) provides fast and excellent positioning. The drive works in open loop mode and is switched over in closed loop during deceleration. This is a time-optimal positioning structure with very high stability.

Even the Numeric Control mode can be used, for a speed controlled internal profile generation (VMODE = ON).

The synchronization control works as a second overriding velocity/position controller. Failure between the axes will be compensated by adjusting the speed of the slave axis.

The card sample time is 2 ms, up to 5 ms with 9 axes to drive.

2 - EWM-SS-DAD FUNCTIONAL SPECIFICATIONS

2.1 - Power supply

This card is designed for 12 to 30 VDC (typical 24 V) of a power supply. This power supply must correspond to the existing EMC standards.

All inductivity at the same power supply (relays, valves) must be provided with an over voltage protection (varistors, free-wheel diodes)

It is recommended to use a regulated power supply (linear or switching mode) for the card supply and for the sensors.

2.2 - Electrical protections

All inputs and outputs are protected with suppressor diodes and RC-filters against transient overshoots.

2.3 - Digital Input (ENABLE)

The digital input must have a voltage from 12 to 24 V with current 50 mA; Low level: <2V, high level >10V.

Keep to the block diagram at paragraph 7 for the electric connections. Apply to PIN 8 the 24V to enable hardware.

2.4 - Reference signal

The reference signal is run through the card-bus and addressed to the individual modules via Profibus, ID number 1810h (see par. 7 / 8).

2.5 - Input feedback values

The card works both with digital (SSI) or analog (ANA) sensors.

SSI: parameters are settable via software (see SSI parameters in the table on next page).

ANA: The analogue signal must be voltage 0 ÷ 10V with RI = 25 k Ω or current 4 ÷ 20 mA, with RI = 250 Ω

The analogue resolution is of 0,01% of the sensor stroke.

Using analog sensors, the SSI parameters in the software assume default preset values that the user must not change.

2.6 - Output values

E0 version: output voltage 0 \pm 10 V (max load 5 mA). E1 version: output current 4 \div 20 mA. (max load 390 Ω)

2.7 - Digital Output

Two digital output are available, INPOS and READY, that are displayed via LEDs on the front panel.

Low level <4V; High level >10V (I_{max} 50 mA with load of 250 Ω)

89 460/115 ED **2/14**

3 - LED FUNCTIONS

There are two leds on the EWM-SS-DAD card:

GREEN: Shows if the card is ready.

ON - The card is supplied and ENABLE, hardware, software ON OFF - No power supply or the ENABLE HW/SW is inactive FLASHING - Error detected (internal or 4 ÷ 20 mA).

Only if the parameter SENS is ON

YELLOW: Status signal. Axes position.

ON - Axis within position.
OFF - Axis outside position.

4 - ADJUSTMENTS

On the EWM cards the adjustment setting is possible only via software. Connecting the card to the PC, the software automatically recognises the card model and shows a table with all the available commands, with their parameters, the default setting, the measuring unit and an explanation of the commands and its uses.

The parameters changes depending on the hardware and mechanic configuration. The hardware setting must be the same for all the axis. The use of symmetrical structures it is strongly recommended.

PARAMETERS TABLE

Commands	Parameter	Defaults	Units	Description
inpx	X= SSI ANA	SSI	-	Selection of the sensor input channel. The standard is a digital sensor with SSI specification at the corresponding connections (clamps 25 to 28 and 31, 32). Alternatively an analogue input which is indicated in the command as parameters "ANA" can be used. The command AIN is used for input scaling of the analogue input.
ain:i abcx	i= XL a= -10000 10000 b= -10000 10000 c= -10000 10000 x= V C	: 1000 : 1000 : 0	- - 0,01%	Analogue input scaling for XL (actual value) analog input signal. $V = \text{voltage}$ input and $C = \text{current}$ input. With the parameters a , b and c the input can be scaled (output = a / b * (input - c)). Because of the programming of the x -value ($x = C$) the corresponding input will be switched over to current automatically. (see NOTE)
num	X= 0 24	2	-	Number of axes connected to the Profibus (see NOTE at paragraph 9.1.1)
stroke x	X= 2 5000	200	mm	Full stroke of the sensor (100% of input signal). The stroke of the sensor is needed for the scaling of the analogue input and for the calculation of the braking stroke.
ssioffset x	X= -30000 30000	0	0,01 mm	Zero point adjustment of the sensor.
ssires x	X= 10 1000	1000	μm (micron)	Definition of the sensor resolution. The highest resolution (1000) corresponds to 1 μ m (0,001 mm). This sensor resolution is always used for the input data via Profibus and is needed for the internal calculations. (see NOTE)
ssibits x	X= 8 32	24	-	Data protocol length in bits
ssicode x	X= GRAY BIN	GRAY	-	Transmitting code of the sensor.
ssipol x	X= + -	+	-	Sensor polarity. In order to reverse the working direction of the sensor, the polarity can be changed via this command. In any case also the SSIOFFSET has to be adjusted. Ex: Sensor length = 200 mm opposite working direction. SSIPOL is set on "-" and SSIOFFSET on 20000.
a:i x	i= A B x= 1 2000	:A 200 :B 200	ms ms	Acceleration time depending on direction. The ramp time is separately set for driving out (A) and for driving in (B). Normally A = flow P-A, B-T and B = flow P-B, A-T.
d:i x	i= A B S X= 50 10000	:A 2500 :B 2500 :S 1000	0,01% 0,01% 0,01%	Deceleration stroke depending on direction. This parameter is set in 0,01% units of the maximum length of the sensor. The braking distance is set dependent from the direction. The controller gain will be calculated by means of the braking distance. The shorter the braking distance the higher the gain (see command CTRL). In case of instabilities a longer braking distance should be set. The parameter D indicates the ratio between the maximum sensor length and and a indicated stopping point; will become active after the removal of the 'START' signal only.
ctrl x	x= lin sqrt1 sqrt2	sqrt1	-	Deceleration curve (see NOTE): lin = linear curve sqrt1 = optimized curve sqrt2 = curve optimized for high gain in positioning
syncmode x	X= MS AV	MS		Synchronization mode. MS - Master/Slave:all axes follow the master axis (MASTER = 1) AV - Averages calculation: the command position will be calculated by the averages of all axes.
glp x tl x	X= -10000 10000 X= 0 100	500	0,01 ms	Parameters for optimization of the synchronisation controller. (see NOTE) The SYNC-controller works as a PT1 compensator for optimized controlling of hydraulic drives. Critical drives can be stabilized with the T1 factor.
vramp x	x= 10 2000	200	ms	Ramp time for the command speed.

89 460/115 ED 3/14

vmode x	x= on off	off		Switching over the control mode. OFF: stroke depended deceleration mode (SDD); It's the default mode. The drive comes to a controlled stop at the target position, then switches to control mode and moves accurately to the desired position. The speed varies with the fluctuating pressure as the system runs under open-loop control. ON: numeric control (NC). A position profile is generated internally. The system always works under control and uses the following error to follow the position profile. For a properly operating it is necessary not to run at 100 % speed, as otherwise the errors cannot be corrected. 80 % of the maximum speed is typical The stroke time is defined by the parameter VEL.
vel x	X= 1 20000	50	mm/s	Internal maximum velocity preset when VMODE = ON (numeric control mode).
inpos mode x	X= EPC TRC	TRC	-	Choosing signal for "inpos" message (LED) in NC mode (VMODE = ON only) On master modules yellow led are activated by the INPOS signal. EPC = positioning error in endposition TRC = monitor the tracing error generated by the positioning profile.
min:i x	i= A B x= 0 5000	:A 0 :B 0	0,01% 0,01%	Deadband compensation for positive overlapped proportional valves. Good adjustment will increase positioning accuracy
max:i x	i= A B X= 5000 10000	:A 10000 :B 10000	0,01% 0,01%	Limitation / Gain. Maximum output signal. Adapt the control range to maximum flow range.
trigger x	X= 0 2000	200	0,01%	Response threshold for the MIN parameter. Also useful for reduced sensitivity in position with positive overlapped proportional valves. (see NOTE)
inpos x glerror x	X= 0 5000 x= 0 5000	32 32	0,01mm 0,01mm	Defined windows for creating status signals. INPOS = Definition of the range (window) of the related signal in which the INPOS message will be generated. The positioning process will not be influenced by it. The controller remains active. GLERROR = defines the range of the allowed synchronization error for generating this message. In slave modules this signal is given to the status outputs (PIN 2 and corresponding LED) Working in NC mode GLERROR defines the window synchronization error; INPOS the tracking error.
offset x	x= -2000 2000	0	0,01%	Zero point adjustment. The corresponding OFFSET will be added to the control error (demand value - actual value + offset). With this parameter the zero point failure can be compensated.
pol x	x= + -	+	-	Output polarity. All A and B adjustments depend on the output polarity. The right polarity should be defined first.
sens x	x= on off	on	_	The sensor monitoring can be activated.
save	-	-	-	Storing the programmed parameter in E ² PROM.
loadback	-	-	-	Reloading the parameter from E²PROM in working RAM
help	-	-	-	Listing of all available commands.
сору	-	-	-	Transfer of the parameters into all other modules at the node CAN. The parameters are stored in the EEPROM.
st	-	-	-	Status of the profibus communication, actual sent/received values.
wl	Command position	-	mm	The process data can be read out via software.
xl xw	Actual position Position error		mm	They show the actual and command values
kx	Master position		mm	
kxw	Synchro error		mm	
v	Speed limitation		8	
u	Control signal		8	
x:i	Axis position		mm	
default	via index		_	Property cluses will be not
deraurt	_			Preset values will be set.

$\label{eq:NOTE about the AIN command: This command is for analogue sensors only.}$

With this command each input can be scaled individually. For the scaling function the following linear equation is taken: output signal = a/b * (input signal - c).

At first the offset (c) will be subtracted from the input signal, then the signal will be multiplied with factor $\bf a$ / $\bf b$. $\bf a$ and $\bf b$ should always be positive. With these both factors every floating-point value can be simulated (for example: 1.345 = 1345 / 1000).

With the x parameter value the internal measuring resistance for the current measuring (4... 20 mA) will be activated (V for voltages input and C for current input). ATTENTION: This resistor is never activated at the k input.

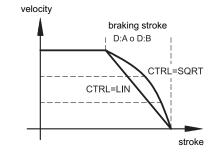
	AIN:X	а	b	С	X	
i with voltage:	AIN:i	1000	1000	0	V	
i with current:	AIN:i	2000	1600	2000	С	

89 460/115 ED 4/14

NOTE about the SSIRES command: the standard of measurement is defined as increment/mm (inkr/mm). The maximum available resolution is equal to 1 µm that corresponds to a value 1000.

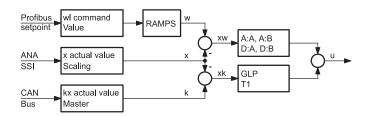
Example: A sensor with resolution 5 μ m has a resolution (0.005 mm) 5 times lower than the maximum set. The SSIRES value is calculated as follows: 1000 (full scale ink) / n (sensor resolution in μ m) = 1000 / 5 = 200 with a 2 μ m sensor resolution the value will be = 1000 / 2 = 500:

NOTE about the CTRL command: This command controls the braking characteristic of the hydraulic axis. With positive overlapped proportional valves one of both SQRT braking characteristics should be used because of the linearization of the non-linear flow curve typical of these valves If zero overlapped proportional valves (control valves) are used, you can choose between LIN and SQRT1 according to the application. The progressive gain characteristic of SQRT1 has the better positioning accuracy.

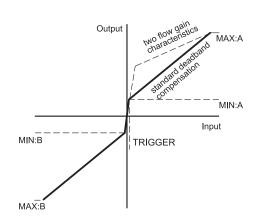

According to the application there is maybe a longer braking distance, so that the total stroke time will be longer.

LIN: Linear braking characteristics (control gain corresponds to: 10000 / d:i).

SQRT*: Root function for the calculation for the braking curve.


SQRT1: with small control error. control gain corresponds to 30000 / d:i;

SQRT2: control gain corresponds to 50000 / d:i


NOTE about the GLP and T1 command: Both controllers (sync and positioning) are working parallel. The higher the sync-gain the lower must be the gain of the positioning controller. A time constant value (T1) can be used to damp the sync-controller for better stability.

Simplified control structure:

NOTE about the TRIGGER command: With this command, the output signal is adjusted to the valve characteristics. The positioning controllers have a double-gain characteristic curve instead of a typical overlapped jump. The advantage is a better and more stabile positioning behaviour. With this compensation, non-linear volume flow characteristic curves can be adjusted too.

If there exist also possibilities for adjustments at the valve or at the valve electronics, it has to be guaranteed, that the adjustment has to be carried out at the power amplifier or at the positioning module. If the MIN value is set too high, it influences the minimal velocity, which cannot be adjusted any longer. In extreme case this causes to an oscillating around the closed loop controlled position.

89 460/115 ED 5/14

5 - INSTALLATION

The card is designed for rail mounting type DIN EN 50022.

The wiring connections are on the terminal strip located on the bottom of the electronic control unit. It is recommended to use cable sections of 0.75 mm², up to 20 m length and of 1.00 mm² up to 40m length, for power supply and solenoid connections. For other connections it is recommended to use cables with a screened sheath connected to earth only on the card side.

NOTE: To observe EMC requirements it is important that the control unit electrical connection is in strict compliance with the wiring diagram. As a general rule, the valve and the electronic unit connection wires must be kept as far as possible from interference sources (e.g. power wires, electric motors, inverters and electrical switches).

In environments that are critical for the electromagnetic interference, a complete protection of the connection wires can be requested

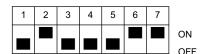
A typical screened Profibus plug (D-Sub 9pol with switchable termination) is mandatory. Also the Profibus cable must be screened

Every Profibus segment must be provided with an active bus termination at the beginning and at the end. The termination is already integrated in all common Profibus plugs and can be activated by a DIL switch.

5.1 - EWM-BUS-DD settings and installation

The module supports all baud rates from 9,6 kbit/s up to 12000 kbit/s with auto detection of the baud rate. The functionality is defined in IEC 61158. The Profibus address can be programmed by a terminal program, EWMPC/10 or online via the Profibus (default address 3). A display shows the status of the communication between the nodes.

The CAN-side installation of the EWM-BUS-DD is easy and only few steps are necessary.


Wire the CAN Bus of the coupler with the CAN Bus line of the EWM-SS-DAD cards, as shown below:

EWM-BUS-DD	EWM-SS-DAD
pin 1	pin 23
pin 3	pin 21
pin 4	pin 22

Connect the power supply: pin 5 and pin 6 = 24 V pin 7 and pin 8 = 0 V

The reference values are preset over the digital Profibus / CAN-Bus that worked with full internal resolution. The position resolution corresponds to the sensor resolution.

The module EWM-BUS-DD is preconfigured for proper communication with the cards EWM-SS-DAD. The address of the node Canbus (2) and the transmission speed rate (1MBd) must comply with the following configuration:

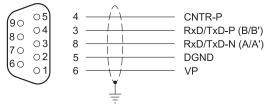
The DIL switch is inside the module and it gives the possibility to set address and data transmission speed.

The tables below show the meaning of DIL Switches:

DIL-SWITCH						
1	2	3	4	5	6	7
CANBUS ADDRESS NODE TRANSMISSION SPEED						

TRANSMISSION	DIL-SWITCH		
SPEED	6	7	
125 Kbaud	OFF	OFF	
250 Kbaud	ON	OFF	
500 Kbaud	OFF	ON	
1 Mbaud	ON	ON	

5.1.1 - Display


The EWM-BUS-DD has a display that shows the module status:

- everything OK, Profibus and CAN Bus in data exchange
- 1 Error, CAN Bus no data exchange
- 2 Error, Profibus no communication
- 3 Error, Profibus no communication, CAN Bus no data exchange
- 4 Error, Profibus OK, not connected CAN Bus
- 5 Error, Profibus no communication, not connected CAN Bus
- 6 Error, hardware fault

5.1.2- ProfiBUS socket

A shielded typical Profibus connector (9-poles) with internal terminal resistors to be set properly, must be used. The pre addressing of the module can be changed only by Profibus (DEFAULT is 3). The cable is not included.

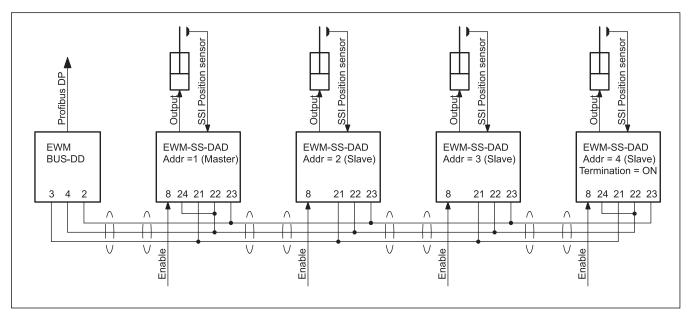
PROFIBUS SOCKET WIRING AND LINKING CONFIGURATION

pin	Signal name	Function
1-2-7-9	not used	-
3	RxD/TxD-P (B-Line)	Receive/Send P data
4	CNTR-P/RTS	Request to Send
5	DGND	Data ground
6	VP	+5 V DC for external bus termination
8	RxD/TxD-N (A-Line)	Receive/Send N data

89 460/115 ED 6/14

5.2 - EWM-SS-DAD - CAN interface

The CAN interface is wired on all modules in parallel. The terminating resistors have to be activated in the EWM-SS-DAD at the first and last module. Termination is enabled by a bridge between pin 22 and pin 24.


Start the addressing of the EWM-SS-DAD from the number 1, that set the card as MASTER, using the rotary switch on the front panel of the card (use a screwdriver or a small knob of appropriate size).

The MASTER module drives the main axis and takes over the communication with the interface converter EWM-BUS-DD.

The other addresses (2 to 9) set the card as SLAVE.

Upon delivery, the switch is set to zero (no address); you must configure the addressing on each card in the series, depending on the number of axes to be synchronized (see example below).

5.3 - Wiring for 4-axes synchronization

6 - SOFTWARE

6.1 - KIT EWMPC/10 (code 3898401001)

The software kit comprising a USB cable (2 m length) to connect the card to a PC or notebook and the software.

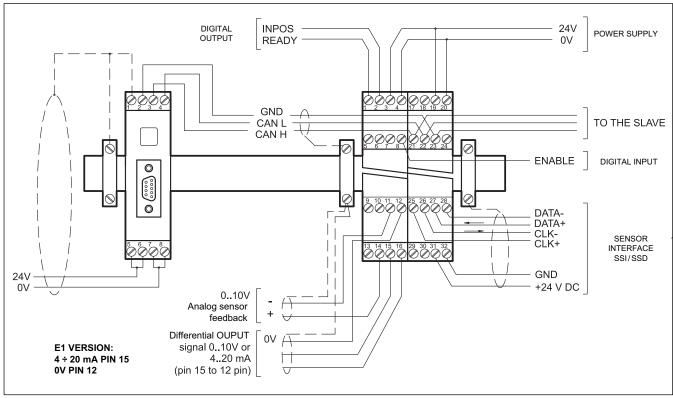
Verify the software version. For correct operating version 3.3 or higher is needed. Lastest version is downloadable from our website.

During the identification all information are read out of the module and the table input will be automatically generated.

Some functions like baud rate setting, remote control mode, saving of process data for later evaluation are used to speed up the installation procedure.

The software is compliant with Microsoft XP® operating systems.

6.2 - .GSD file for ProfiBus module


The file is downloadable from our website .

www.duplomatic.com, download section.

89 460/115 ED **7/14**

7 - WIRING DIAGRAM FOR EWM-SS-DAD*E0 AND EWM-BUS-DD

DIGITAL INPUT AND OUTPUT

PIN READY output:

1 General operationally, ENABLE is active and there is no sensor error (by use of 4 ÷ 20 mA sensors). This output corresponds with the green LED.

PIN STATUS output:

2 STATUS is active when the axis is within the INPOS window of postioning or synchronisation.

PIN ENABLE input:

This digital input signal initializes the application. The analogue output is active and the READY signal indicates that all components are working correctly. Target position is set to actual position and the drive is closed loop controlled.

ANALOGUE SIGNALS

PIN Analogue feedback value (X),

range 0 ÷ 100% corresponds to 0 ÷ 10V or 4 ÷ 20 mA

PIN Differential output (U)

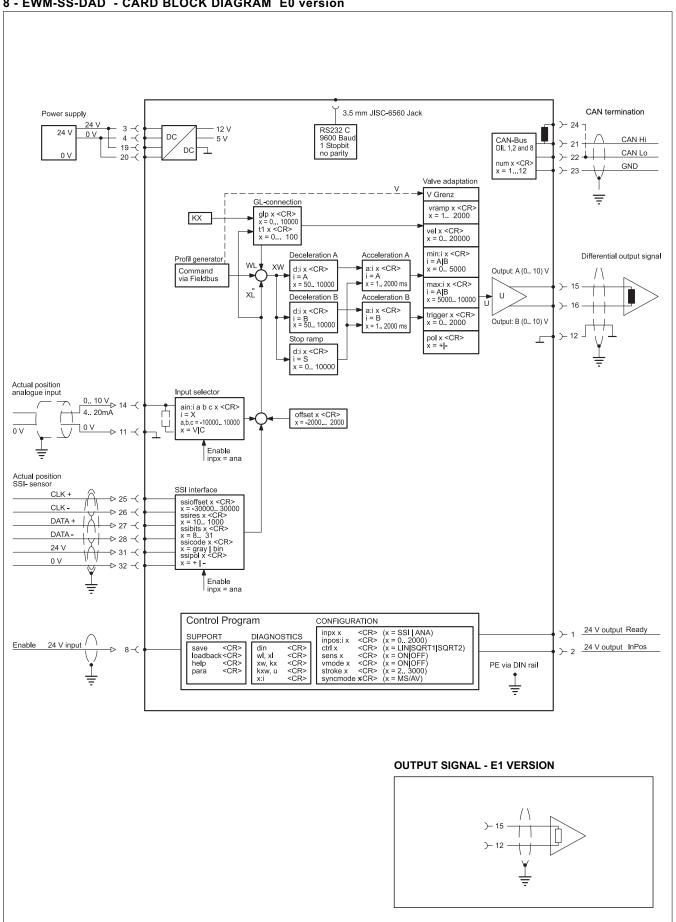
15/16 ±100% corresponds to ± 10V differential voltage, optionally (E1 version) current output ±100% corresponds to 4 ÷ 20 mA (PIN 15 to PIN 12)

LOCAL CAN-BUS

PIN CAN LO, CAN HI, and GND

21..23

PIN Termination of the CAN-Bus


24 a bridge to pin 22 at 1st (master) and last module is necessary.

89 460/115 ED **8/14**

EWM-SS-DAD

8 - EWM-SS-DAD - CARD BLOCK DIAGRAM E0 version

89 460/115 ED 9/14

9 - PROFIBUS COMMUNICATION

The Profibus board controls the modules by sending 8 bytes of data, which contain information on two control words, the command position (position setpoint) and speed control (speed setpoint). The EWM-SS-DAD cards send back to the bus-card two status words, the nominal current position and current actual position, for a total of 24 bytes of data.

Using ST command in EWMPC, those data can be read out. and they appearing in this way:

(high byte / low byte)
control word : 1110 1000 / 0000 0000
control word 2 : 0010 0000 / 0010 0000
status word : 1101 0000 / 1101 0000
status word 2 : 0010 0000 / 0010 0000

position setpoint: 22400 (command position in HEX via Profibus) speed setpoint: lfff (command speed in HEX via Profibus)

Enable: enabled (module = enabled (Profibus & Hardware-enable))

9.1 - Data sent to the axes

The EWM-BUS-DD card is set as follows: (Hi = High byte; Lo = low byte)

Byte	Function	Comment
0	control word Hi	unsigned int
1	control word Lo	
2	command position Hi	unsigned long
3	command position	
4	command position	
5	command position Lo	
6	velocity Hi	unsigned int
7	velocity Lo	
8	control word 2 Hi	unsigned int
9	control word 2 Lo	
10 - 23	reserved	no function

9.1.1 - Axes control

Only the first four axes may be activated individually, the further axes must be enabled in groups of four axes at a time, by the x SEL indicator, according to the following:

Address	Controlled axes					
SEL	1 to 4	5 to 8	9 to 12	13 to 16	17 to 20	21 to 24
2	0	0	0	0	1	1
1	0	0	1	1	0	0
0	0	1	0	1	0	1

NOTE: The module EWM-BUS is a module used also in other synchronization systems that manage a greater number of axes.

The system with EWM-SS-DAD cards described in this documentation allows to manage max 9 axes.

9.1.2 - Control words

The control words contain the following informations:

ENABLE: Must be activated in addition to the hardware signal. START: In case of increasing edge the current command

position is taken over, in case of deactivated START the system about a brake ramp is stopped.

GL-ACTIVE: Over this bit the overlapped synchronism controller

is activated.

SEL x: Groups of each four modules with the information

about status and positions can be read - by the

control of the three select-bits -back.

	Byte 0 - control word Hi				
bit	Function				
0	Axis START 4	start 1 = active			
1	Axis START 3	start 1 = active			
2	Axis START 2	start 1 = active			
3	Axis START 1	start 1 = active			
4	SEL 2	selection 1 = active			
5	SEL 1	selection 1 = active			
6	SEL 0	selection 1 = active			
7	Enable (with which enable hardware links)	operation 1 = active			

	Byte 1 - control word Lo					
bit	Function					
0	GL- Active ext 2 (axis 9 to 12)	1 = GL active (group 2)				
1	GL- Active ext 1 (axis 5 to 8)	1 = GL active (group 1)				
2	START ext 2 (axis 9 to 12)	1 = start (group 2)				
3	START ext 1 (axis 5 to 8)	1 = start (group 1)				
4	GL- Active axis 4	synch 1 = active				
5	GL- Active axis 3	synch 1 = active				
6	GL- Active axis 2	synch 1 = active				
7	GL- Active axis 1	synch 1 = active				

	Byte 8 - control word 2 Hi		
bit	Function		
0	Reserved		
1	Reserved		
2	Reserved		
3	START ext 5 (start of axis 13 to 16)	1 = start (group 5)	
4	START ext 4 (start of axis 17 to 20)	1 = start (group 4)	
5	START ext 3 (start of axis 13 to 16)	1 = start (group 3)	
6	Reserved		
7	Reserved		

89 460/115 ED 10/14

Byte 9 - control word 2 Lo			
bit	Function		
0	Reserved		
1	Reserved		
2	Reserved		
3	GL- Active ext 5 (axis 21 to 24)	1 = GL active (group 5)	
4	GL- Active ext 4 (axis 17 to 20)	1 = GL active (group 4)	
5	GL- Active ext 3 (axis 13 to 16)	1 = GL active (group 3)	
6	Reserved		
7	Reserved		

9.1.3 - Position setpoint description

Command position: according to the sensor resolution.

Byte 2 to 5 - command position			
bit	Function defined by the sensor resolution		
from 0 to 7	Command position Lo byte	Byte 5	
from 8 to 15	Command position	Byte 4	
from 16 to 23	Command position	Byte 3	
from 24 to 31	Command position Hi byte	Byte 2	

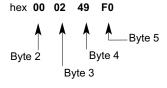
Example of calculation of position control for SSI sensor resolution = 5 μ m and 100% stroke = 300 mm.

Position setpoint = 150 mm (= 50% stroke)

STROKE • SSIRES = 100% stroke (dec)

300 • 200 = 60.000 (dec) → EA60 (hex)

50% di 60.000 = 30.000 (dec) \rightarrow 7530 (hex)


Example of calculation of position control for ANA sensor with 100% stroke = 300 mm. With analog sensors ssires value is preset and unchangeable.

Position setpoint = 150 mm (= 50% stroke)

STROKE • SSIRES = 100% stroke (dec)

 $300 \cdot 1000 = 300.000 (dec) \rightarrow 493E0 (hex)$ 50% di $300.000 = 150.000 (dec) \rightarrow 249F0 (hex)$

Position setpoint to be sent with decimal value 150,000:

9.1.4 - Speed setpoint description

Command velocity: 0x3fff corresponds to 100 %.

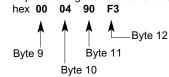
Byte 6 and 7 - command velocity		
bit Function max value 0x3FFF		
from 0 to 7	velocity Lo byte	Byte 7
from 8 to 15	velocity Hi byte	Byte 6

9.2 - Updating data

The EWM-SS-DAD cards send back to the bus-card two status words, the received setpoint command and the current actual position, totally of 24 bytes of data.

Byte	Function	Comment
0	status word Hi	unsigned int
1	status word Lo	
2	control position* Hi	unsigned long
3	control position*	
4	control position*	
5	control position* Lo	
6	status word 2 Hi	unsigned int
7	status word 2 Lo	
8	actual pos. axes 1,5,9,13,17,21 Hi	unsigned long
9	actual pos. axes 1,5,9,13,17,21	
10	actual pos. axes 1,5,9,13,17,21	
11	actual pos. axes 1,5,9,13,17,21 Lo	
12	actual pos. axes 2,6,10,14,18,22 Hi	unsigned long
13	actual pos. axes 2,6,10,14,18,22	
14	actual pos. axes 2,6,10,14,18,22	
15	actual pos. axes 2,6,10,14,18,22 Lo	
16	actual pos. axes 3,7,11,15,19,23 Hi	unsigned long
17	actual pos. axes 3,7,11,15,19,23	
18	actual pos. axes 3,7,11,15,19,23	
19	actual pos. axes 3,7,11,15,19,23 Lo	
20	actual pos. axes 4,8,12,16,20,24 Hi	unsigned long
21	actual pos. axes 4,8,12,16,20,24	
22	actual pos. axes 4,8,12,16,20,24	
23	actual pos. axes 4,8,12,16,20,24 Lo	

(*) If the average-value control is active (SYNCMODE = AV) the acknowledged value is the calculated position; If the MASTER/SLAVE (SYNCMODE = MS) is active the acknowledged value will be the command position.


Current command position: is interpreted according to mode differently.

Standard mode: target command position

NC-mode : (VMODE = ON) calculated command position of the generator.

Actual position: according to the sensor resolution.

Example: reading the value of stroke 299251:

89 460/115 ED 11/14

9.2.1 - Status word descriptions

READY: System is ready.

INPOS: Depending on the mode set, can transmit a position

or, in NC mode, the following error control

information.

GL-ERROR: The synchronism error is indicated over this bit by the

parameter GLERROR dependently.

SENSOR ERROR: When the sensor monitoring is activated, the

READY signal is deactivated with a sensor error.

COMERROR: Communication error on the CAN Bus.

This message will be sent only from the module No. 1. if general communication problems are found

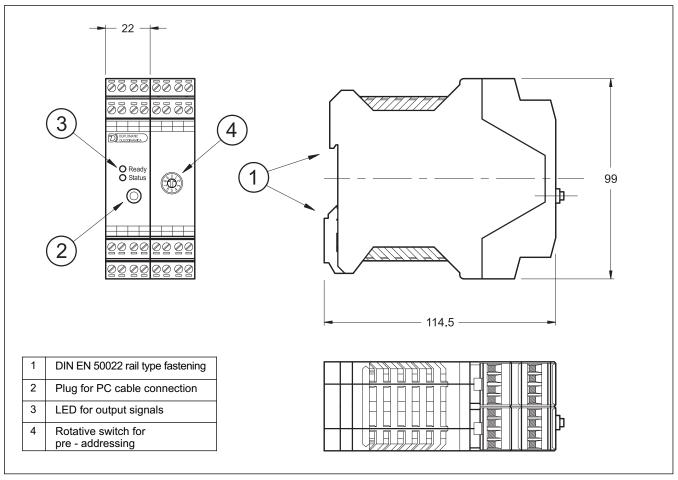
or if a module is faulty

Always the hardware enable signal has to be deactivated at a sensor error (READY Signal) or when a COM error appear.

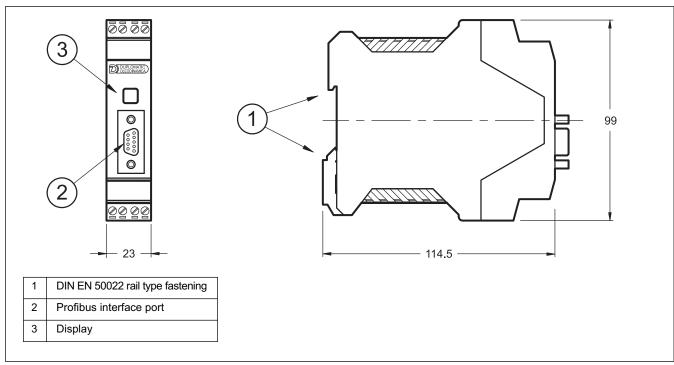
Byte 7 - status word 2 Lo		
bit	Function	
0	reserved	
1	reserved	
2	reserved	
3	reserved	
4	GL-Error axis 4, 8, 12, 16, 20, 24	1= no error Corresponding signal indicator through selection bits Sel_0 to Sel_2 in the control word Hi
5	GL-Error axis 3, 7, 11, 15, 19, 23	
6	GL-Error axis 2, 6, 10, 14, 18, 22	
7	GL-Error axis 1, 5, 9, 13, 17, 21	

The status word 2 concerns the messages in the EXTENDED mode.

Byte 0 - status word Hi		
bit	Function	
0	INPOS axis 4	1= in position
1	INPOS axis 3	1= in position
2	INPOS axis 2	1= in position
3	INPOS axis 1	1= in position
4	READY axis 4	1= ready
5	READY axis 3	1= ready
6	READY axis 2	1= ready
7	READY axis 1	1= ready


Byte 1 - status word Lo		
bit	Function	
0	COMerror	1 = no error
1	reserved	
2	reserved	
3	reserved	
4	axis GL-Error 4	1 = no error
5	axis GL-Error 3	1 = no error
6	axis GL-Error 2	1 = no error
7	axis GL-Error 1	1 = no error

Byte 6 - status word 2 Hi		
bit	Function	
0	INPOS axis 4, 8, 12, 16, 20, 24	1= no error Corresponding signal indicator through selection bits Sel_0 to Sel_2 in the control word Hi
1	INPOS axis 3, 7, 11, 15, 19, 23	
2	INPOS axis 2, 6, 10, 14, 18, 22	
3	INPOS axis 1, 5, 9, 13, 17, 21	
4	READY axis 4, 8, 12, 16, 20, 24	1= Ready Corresponding signal indicator through selection bits Sel_0 to Sel_2 in the control word Hi
5	READY axis 3, 7, 11, 15, 19, 23	
6	READY axis 2, 6, 10, 14, 18, 22	
7	READY axis 1, 5, 9, 13, 17, 21	


89 460/115 ED 12/14

10 - OVERALL AND MOUNTING DIMENSIONS OF EWM-SS-DAD

11 - OVERALL AND MOUNTING DIMENSIONS OF EWM-BUS-DD

89 460/115 ED 13/14

DUPLOMATIC OLEODINAMICA S.p.A. 20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111

Fax +39 0331.895.339

www.duplomatic.com • e-mail: sales.exp@duplomatic.com