1.5DRE

Aluminium gear flow dividers

Technical Catalogue

Aluminium Body

General Features

GEAR DIVIDERS

A flow divider is composed by two or more modular elements (stages) with driving gears mechanically linked by an internal coupling sleeve, that causes them to turn at the same speed. Unlike multiple pumps, in which the input power is mechanical (shaft connected to a motor), in a flow divider the input power is hydraulic, i.e. a flow under pressure supplies the modular elements, which are connected to the hydraulic circuits serving the users.

The portion of flow elaborated by each element is determined by its nominal flow rate. Therefore, unlike standard static dividers with variable ports, the flow dividers do not cause dissipation and are much more precise. The use of flow dividers reduces the number of pumps necessary as well as the associated individual mechanical power takeoffs and complex mechanical couplers (with greater losses). The total input power is always equal to the sum of the powers supplied by all elements plus a small power loss, usually negligible.

Therefore, if in a period of time the power required by a hydraulic circuit is equal to zero (inactive drained circuit), the power supplied by the element feeding that circuit becomes available for the other elements, which may use it in their own circuits, also operating at higher pressures than the intake pressure.

Typical applications

Flow dividers

Supply of two or more independent hydraulic circuits by means of a single pump, with an overall flow rate equal to the sum of the flow rates.

Examples of this kind of application:

- lifting platforms and bridges;
- hydraulic bending presses and shearing machines;
- · hoisting of freight containers;
- · lubrication systems;
- hydraulic opening / closing of gates;
- · automatic hydraulically-driven machines;
- actuation of formwork for construction;
- wood processing machinery;
- conveyance of trolleys driven by hydraulic cylinders or motors;
- equipment for the food industry;
- · military installations.

Pressure amplifiers

If one line requires higher operating or peak pressure than the others, a flow divider becomes a better solution than a pressure upgrade of all the lines.

With a two-element flow divider the flow can be discharged from the outlet of the first element so that the pressure in the second element becomes higher than the pressure on the main pump.

Examples of this kind of application:

- · presses with fast movements
- machine tools

General Features

GEAR FLOW DIVIDERS "E" SERIES

Aluminium Body

TECHNICAL DATA

- Minimum operating fluid viscosity	12 mm ² / sec
- Max starting viscosity	800 mm ² / sec
- Suggested fluid viscosity range	17 - 65 mm ² / sec
- Fluid operating temperature range	-20 to 80 °C
- Fluid operating temperature range with FPM seals (Viton)	-15 to 110°C
- Fluid operating temperature range with HNBR seals*	-30 to 110°C
- Hydraulic fluid	mineral oil

^{*}Available on request

FILTRATION INDEX RECOMMENDED

Working pressure	>200 bar/2900 psi	<200 bar/2900 psi
Contamination class NAS 1638	9	10
Contamination class ISO 4406	19/18/15	20/19/16
Achieved with filter β_x =75	15 μm	25 μm

For different TECHNICAL DATA, please get in touch with our technical department.

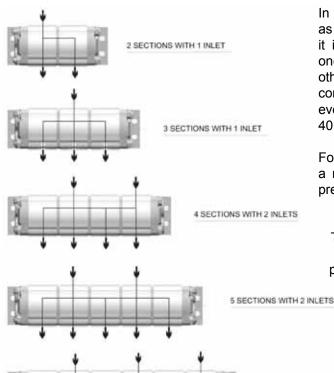
WORKING CONDITIONS

Max flow for each inlet section

When the inlet flow exceed the 40 l/min (1.5DRE)-80 l/min (2DRE), please get in touch with our technical department

When the flow divider is used as pressure intensifier, the pressure between sections can be higher.

- P₁ Max continuous pressure
- P₂ Max peak pressure


	Displacement		Max outlet pressure			Max o	utlet ∆p	Speed		Flow per section		Flow per section		
1.5DRE - Type	Dispia	cement	P ₁	P ₂	P ₁	P ₂		ween tions	min.	max.	min.	max.	min.	max.
	cm³/ rev	cu.in./ rev	bar	bar	psi	psi	bar	psi	mi	n-1	l/n	nin	gr	om
1.5DRE - 2.8	2.8	0.17	250	270	3625	3915	50	725	1200	4500	3.54	13.26	0.93	3.49
1.5DRE - 3.5	3.5	0.21	250	270	3625	3915	50	725	1200	4500	4.42	16.58	1.16	4.36
1.5DRE - 4.1	4.1	0.25	250	270	3625	3915	50	725	1200	4000	5.18	17.26	1.36	4.54
1.5DRE - 5.2	5.2	0.32	230	250	3335	3625	50	725	1200	4000	6.57	21.89	1.73	5.76
1.5DRE - 6.2	6.2	0.38	230	250	3335	3625	50	725	1200	3400	7.83	22.19	2.06	5.84
1.5DRE - 7.6	7.6	0.46	200	220	2900	3190	50	725	1200	3400	9.60	27.20	2.53	7.16
1.5DRE - 9.3	9.3	0.57	180	200	2610	2900	50	725	1200	3000	11.75	29.37	3.09	7.73
1.5DRE - 11	11	0.67	170	190	2465	2755	50	725	1200	3000	13.89	34.74	3.66	9.14

E0.100.0416.02.00IM00

- P₁ Max continuous pressure
- P₂ Max peak pressure

	Diapla	nomont	М	ax. Outle	et Pressu	re	Max. C	Outlet Δp	Spo	eed		per tion		v per ction
2DRE - Type	Displac	cement	p ₁	p ₂	p ₁	p ₂		between sections		max.	min.	max.	min.	max.
	cm³/ rev	cu.in./ rev	bar	bar	psi	psi	bar	psi	mi	n ⁻¹	l/min		gı	om
2DRE - 4,5	4.60	0.27	250	280	3600	4000	50	725	1250	3900	6.05	18.88	1.59	4.97
2DRE - 6,5	6.50	0.40	250	280	3600	4000	50	725	1250	3750	8.55	25.66	2.25	6.75
2DRE - 8,3	8.20	0.50	250	280	3600	4000	50	725	1200	3600	10.36	31.07	2.73	8.18
2DRE - 10,5	10.60	0.65	250	280	3600	4000	50	725	1200	3500	13.39	39.05	3.52	10.28
2DRE - 11,3	11.50	0.68	250	280	3600	4000	50	725	1200	3500	14.53	42.37	3.82	11.15
2DRE - 12,5	12.70	0.77	250	280	3600	4000	50	725	1200	3400	16.04	45.45	4.22	11.96
2DRE - 13,8	13.80	0.84	250	280	3600	4000	50	725	1200	3400	17.43	49.39	4.59	13.00
2DRE - 16	16.60	1.01	250	280	3600	4000	50	725	1100	3200	19.22	55.92	5.06	14.71
2DRE - 19	19.40	1.15	220	240	3150	3450	50	725	1100	3200	22.46	65.35	5.91	17.20
2DRE - 22,5	22.90	1.37	220	240	3150	3450	50	725	1100	3000	26.52	72.32	6.98	19.03
2DRE - 26	25.80	1.58	200	220	2900	3150	50	725	1100	2850	29.87	77.40	7.86	20.37
2DRE - 30	30.10	1.84	200	220	2900	3150	50	725	1100	2700	34.85	85.55	9.71	22.51

GUIDELINE FOR THE COMBINATION OF THE ELEMENTS

In flow dividers with many inlets, as they are all communicating it is even possible to use only one of them, by plugging the other ones. We suggest to make configurations with one inlet every 80 l/min (for 2DRE) and 40 l/min (for 1.5DRE) of flow elaborated.

For division error less than 4% a maximum level of differencial pressure of 50 bar between elements is suggested.

Number of elements	Number of inlets
2	1
3	1
4	2
5	2
6	3
7	3
8	4

To obtain high precisions the respect of the following parametres is also important:

- Enviroment temperature	-1 0°c ÷ +60°c		
- Hydraulic oil based on hlp, hv (c	lin 51 524) minerals		
- Oil filtering	10 ÷ 25 μ		
- Oil temperature	+30°c ÷ +60°c		
- Oil Viscosity	20 ÷ 40 cSt		

To fix the correct number and size of inlet working ports, please contact with our technical department.

6 SECTIONS WITH 3 INLETS

DISPLACEMENT SELECTION

In order to equalize the flow, it needs to maintain the speed within the suggested speed range, with a Δp max of 50 bar (725 psi) between the different stages. Keeping these conditions, we can assure a flow deviation, within \pm 2% on the different stages.

• n = number of section

• $V_{1,2...n}$ = displacement sections

[cm³/rev]

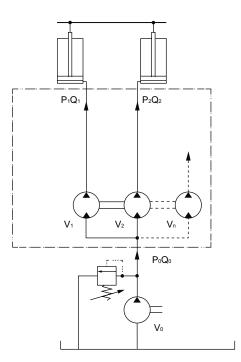
• Q_{1,2...n}= flow sections

[l/min]

• $P_{1,2...n}$ = pressure sections

[bar]

• N = speed


[rpm]

• $Q_0 = Q_1 + Q_2 + ... + Q_n$ pump flow

[l/min]

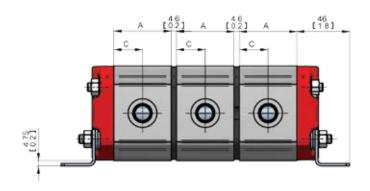
• $P_0Q_0 = P_1Q_1 + P_2Q_2 + ... + P_nQ_n$

$$V_i = \frac{1000Q_i}{N}$$

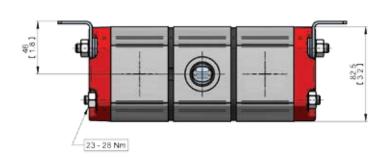
Aluminium Body

INDEX

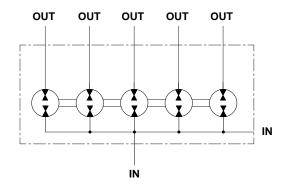
Assembling Dimensions	207
Valves	208
Assembling Dimensions-1.5DRE-VA	209
Ports	210
Flow Dividers (Basic Release)	211
Flow Dividers-1 5DRF-VA	212

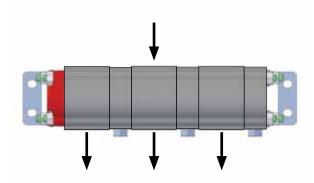

Final revised edition-April 2016

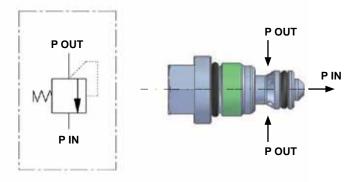
The data in this catalogue refers to the standard product.

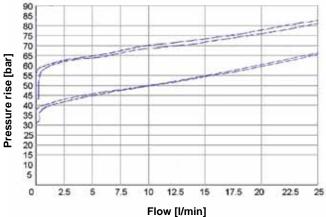

The policy of Salami S.p.A. consists of a continuous improvement of its products. It reserves the right to change the specifications of the different products whenever necessary and without giving prior information. If any doubts, please get in touch with our sales department.

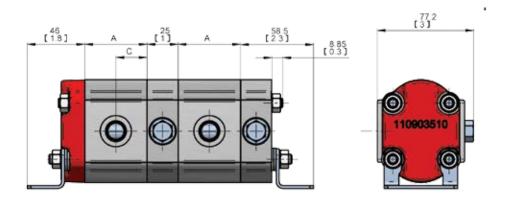
ASSEMBLING DIMENSIONS (BASIC RELEASE)

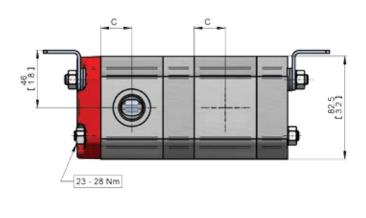


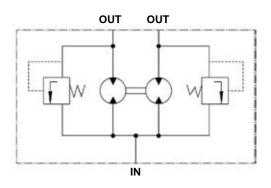

	Dima	: A	D:	-: 0	
Туре	Dime	nsion A	Dimension C		
.,,,,,	mm	in	mm	in	
1.5DRE - 2.8	47.9	1.89	23.95	0.94	
1.5DRE - 3.5	49.9	1.96	24.95	0.98	
1.5DRE - 4.1	51.6	2.03	25.8	1.02	
1.5DRE - 5.2	54.7	2.15	27.35	1.08	
1.5DRE - 6.2	57.5	2.26	28.75	1.13	
1.5DRE - 7.6	61.5	2.42	30.75	1.21	
1.5DRE - 9.3	66.3	2.61	33.15	1.31	
1.5DRE - 11	71.1	2.80	35.55	1.40	

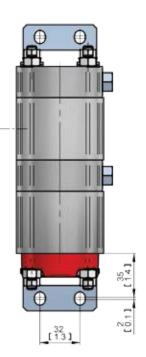

VALVES


Relief valves are used in order to realign the cylinders when they reach the end of the cycle. For example, when the cylinders extend, they may not reach the end of stroke at the same time, due to the differences of internal leakage between the stages. When the first one of a system of cylinders reaches its stroke end, the relief valve in this stage opens and by-pass the flow to tank, in this way it allows the other to reach their stop without causing damages in the system.

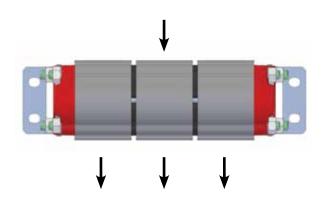

Overload valve (setting 70 bar - 1015 psi)

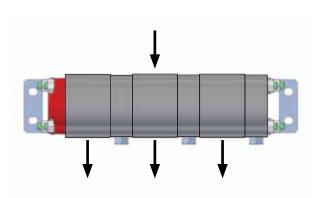


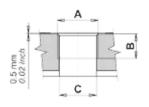



E0.109.0416.02.00IM00

ASSEMBLING DIMENSIONS-1.5DRE-VA (RELEASE WITH VALVES/INTERNAL BY PASS)

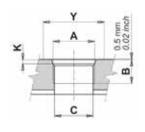






Aluminium Body

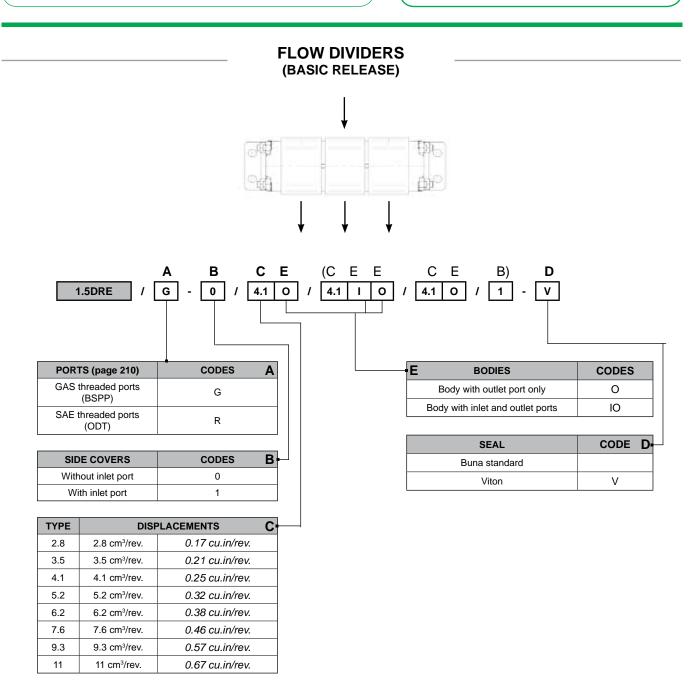
PORTS



code G

Threaded ports GAS (BSPP)

TYPE		INLET			OUTLET	
	Α	В	С	Α	В	С
From 2.8 to 6.2	G1/2	15	17	G3/8	13 (0.51")	13
From 7.6 to 11	G1/2	(0.59")	(0.67")	G1/2	15 (0.59")	(0.51")


code R

Threaded ports SAE (ODT)

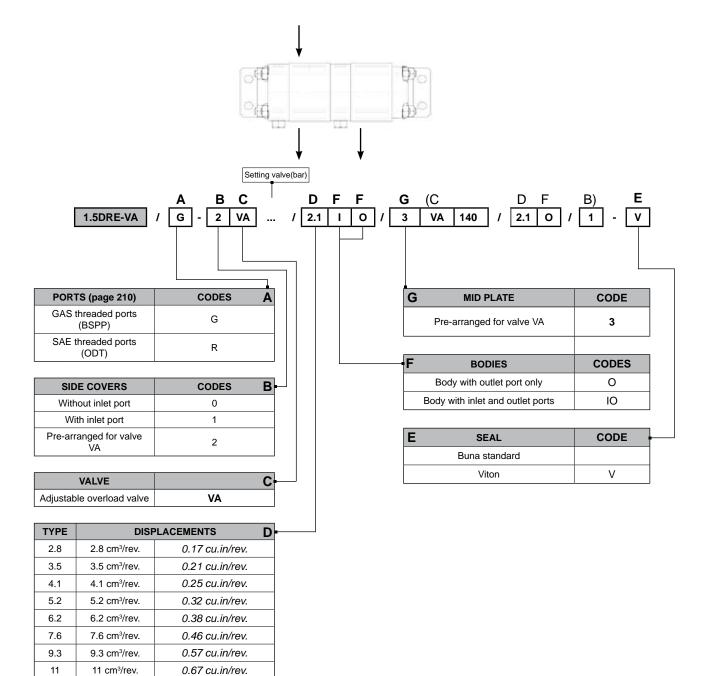
TYPE			INLET				OUTLET			
	Α	В	С	Υ	K	Α	В	С	Υ	K
From 2.8 to 6.2	3/4 -16 UNF (SAE 8)	14.5 (0.57")	13 (0.51")	30 (1.18")	2.5 (0.10")	9/16 - 18 UNF (SAE6)	1	3 51")	25 (0.98")	2.5
From 7.6 to 11	7/8 -14 UNF (SAE10)	16.7 (0.66")	20 (0.79")	34 (1.34")	2.5 (0.10")	3/4" 16 UNF (SAE8)	14.5 (0.57")	15 (0.59")	30 (1.18")	(0.10")

Aluminium Body

1.5DRE-How to order

Proceding as per our example above, when you have to set up a 1.5DRE flow divider, beginning from the right side you have to specify:

- Side cover (with or without inlet port)
- Stages → displacement
 - →**bodies** outlet port only or both inlet and outlet ports
- Side cover (with or without inlet ports)
- · Not specified if you want our standard Buna nitrile seals, you have to put V if you want the Viton seals.



How to order-1.5DRE

GEAR FLOW DIVIDERS "E" SERIES

Aluminium Body

FLOW DIVIDERS-1.5DRE-VA

You can find our most up to date "STANDARD SALES CONDITIONS" on our website.

Potete trovare le nostre più aggiornate "CONDIZIONI DI VENDITA STANDARD" sul nostro sito.

www.salami.it

T. +39 059 387 411

sales@salami.it

Watch our tutorials on youtube channel

Salami Fluid Power Salami Fluid Power World Salami Fluid Power France Salami Fluid Power España Salami Fluid Power Deutsch

SALAMI S.P.A.

Via Emilia Ovest 1006 41121 Modena (Italy) T. +39 059 387 411 F. +39 059 387 639 sales@salami.it

SALAMI ESPAÑA

Poligono Industrial Armenteres C/Primer de Maig, 18, Nave 4 08980 San Feliu de Llobregat Barcelona T. +34-93-6327288 F. +34-93-6667826 info@salamispain.com

SALAMI FRANCE

22, rue Louis Saillant 69120 Valux en Velin Lyon T. +33-04-78809941 F. +33-04-78804264 e.pasian@salami.fr

SALAMI HYDRAULICS N.A INC

Loop Road Baldwinsville NY 13027 - USA T. +1-315-295-2363 F. +1-315-295-2364 info@salamihydraulics.com