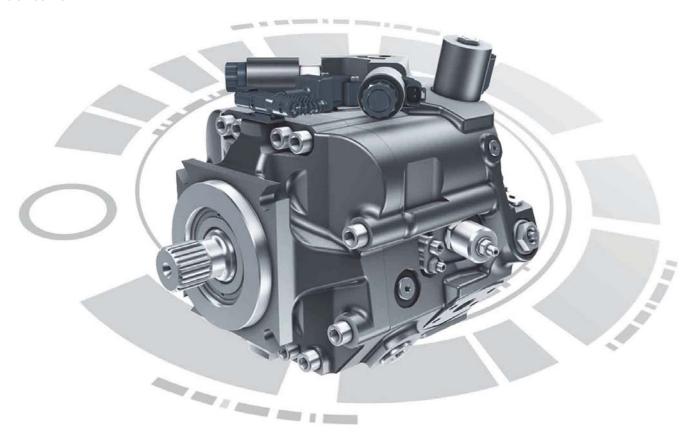
PW/PWE 085 - 096 HEAVY-DUTY HYDROSTATIC PUMP

TECHNICAL CATALOG

OVERVIEW

PWe085/PWe096 is a compact unit able to be directy mounted on the main internal combustion engine, LPG or Diesel, or on a power take-off.

Variable displacement, axial piston pump, with swashplate system, for closed loop hydrostatic transmissions.


It provides a continuously variable flow rate between zero and maximum in forward and reverse direction. Flow rate is proportional to rotation speed and swashplate angle.

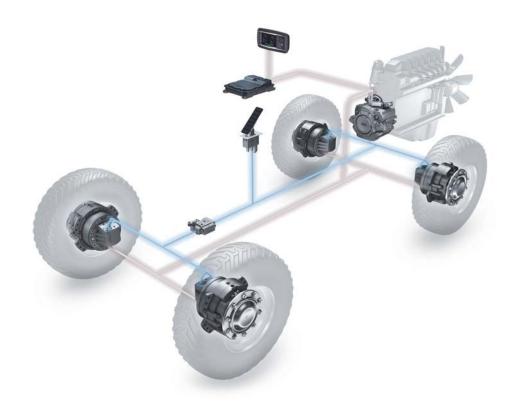
It is featured with a charge pump to keep the circuit pressurised. This avoids risk of cavitations and ensures a good performance of the transmission

It is equipped with high pressure relief valves and control pressure cut-off valve.

It is available in single or tandem version.

As options PWe085/PWe096 can be featured with exchange valve, filter on charge pressure line and safety devices to ensure safe operation of the machine.

		PW/PWe085	PW/PWe096
Displacement	cm³/rev [in³/rev.]	85,2 <i>[5.20]</i>	96,4 [5.88]
Max. peak pressure	bar [PSI]	500 [7252]	450 [6527]
Max. intermittent speed	rpm	3850	3850
Max. theoretical flow	l/min [GPM]	328 [87]	371 [98]
Mass	kg [lb]	71 [157]	
Mounting flange	ge SAE - C		E - C
Control		Solenoid control with feedback sensor and control pressure cut-off valve	

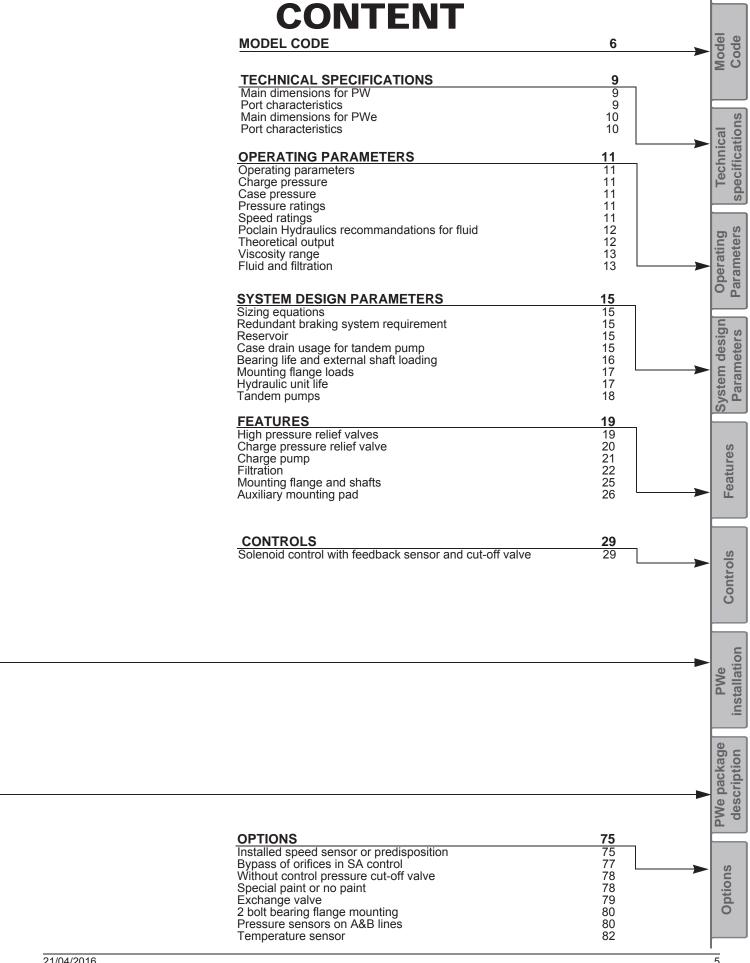

The PW & PWe range: Productivity, Comfort and Energy Efficiency

Used in hydrostatic transmission systems composed of motors, valves, and electronic controls, the PW & PWe range offers you the benefit of over 50 years of expertise gained by Poclain Hydraulics in the field of hydrostatic transmissions.

The performance and added value they provide will help make your machines a commercial success.

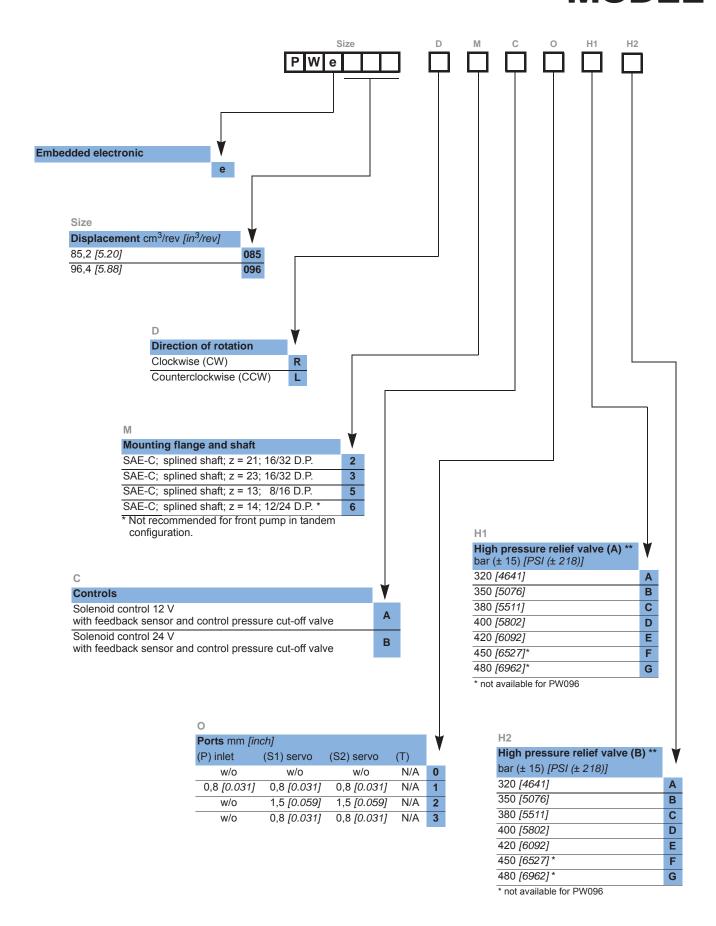
The upcoming anti-pollution standards impose new constraints which must be taken into consideration. End users look for reliable, precise, high performance machines that minimize energy expenditure and maximize comfort.

Designed with compactness, energy efficiency and high power density in mind, the "Heavy Duty" PW & PWe pump range meets these requirements.

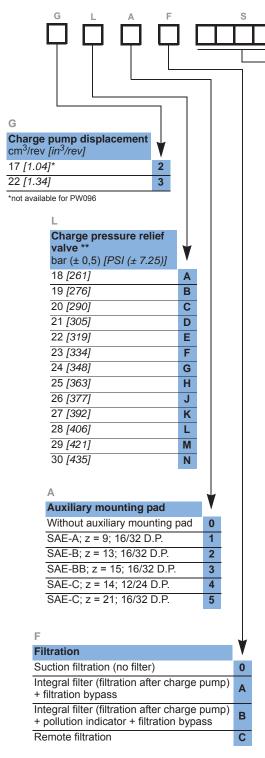


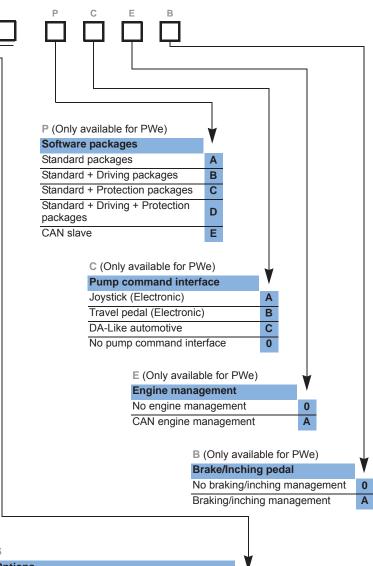
PWE INSTALLATION	33
PWe ECU description	33 34
PWe ECU characteristics	34
PWe ECU environmental performances	35
PWe ECU input characteristics	35
PWe ECU output characteristics	36
Wiring	37
Pump command interface	40
Auxiliaries	43
PWe ECU Configurator	45
Description of functions	48

PWE PACKAGE DESCRIPTION	53
Definitions	53
List of functions	53
Anti-stall	54
Brake lights	54
Driver presence	55
Temperature protection	55
Over pressure protection	56
Over power protection	56
Engine over speed protection	57
Diagnostic	57
Command device	58
Start-up check	59
Hill start	60
Proportional engine control	60
Fixed engine control	61
Mixed engine control	62
CAN broadcasting	63
Braking/Inching Tracking	68
Speed control loop	69
CAN slave management	70
Details of CAN messages	71



21/04/2016




MODEL

S	
Options	V
Without option	0
T4 speed sensor (without rotation direction)	2
Predisposition for speed sensor	8
Bypass of orifices in SA control (only on PW)	В
Without control pressure cut-off valve (only on PW)	С
Special paint or no paint	D
Exchange valve	Н
2 bolt bearing flange mounting	M
Customized identification plate	Р
Pressure sensors on A&B lines	R
Temperature sensor	Т

In case of request for a combination of several options, please contact your Poclain Hydraulics application engineer for further information.

Consult setings of HPRVs and CPRV with your Poclain Hydraulics application engineer in order to avoid that maximum pressure is exceeded.

21/04/2016

echnical

Operating

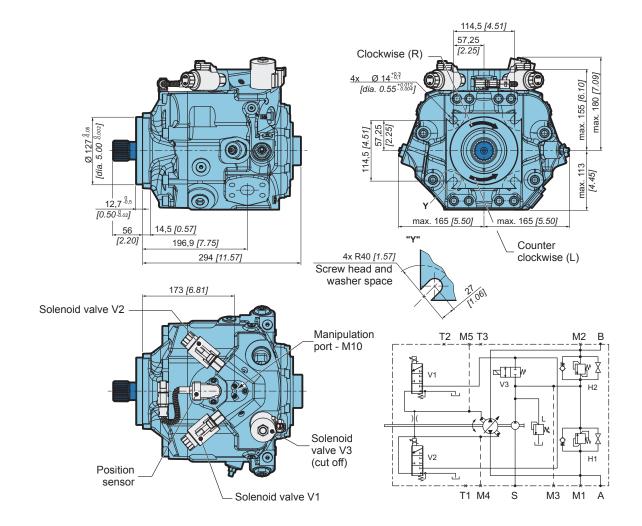
System design

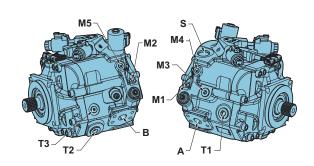
Features

Controls

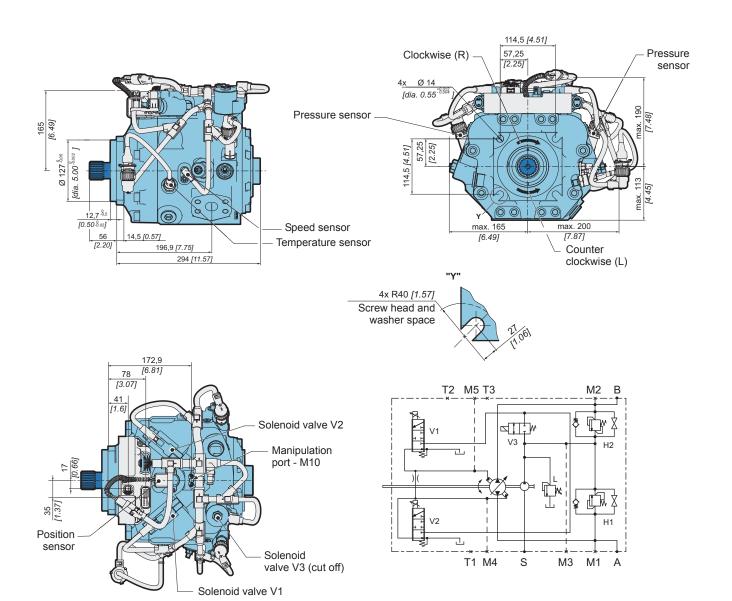
installation

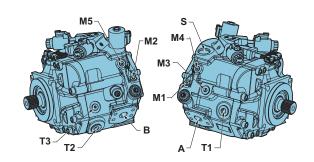
PWe package


Options


TECHNICAL SPECIFICATIONS

Main dimensions for PW


Port characteristics


Port	Function	Size	Norm
A, B	Main port	PN400 DN25	
А, Б	Main port	4xM12	ISO 6162-2
S	Charge inlet	1 5/16-12 UN-2B	ISO 11926-1
M1/M2	A-B ports pressure gauge	13G - G1/4	ISO 1179-1
M3	Charge pressure	7/8-14 UNF-2B	ISO 11926-1
M4/M5	Gauge control pressure	7/16-20 UNF-2B	ISO 11926-1
T1/T2	Gauge case drain	1 1/6-12-UN-2B	ISO 11926-1
T3	Drain temperature port	13G - G1/4	ISO 1179-1

Main dimensions for PWe

Port characteristics

Port	Function	Size	Norm
A, B	Main port	PN400 DN25	
Л, Б	Main port	4xM12	ISO 6162-2
S	Charge inlet	1 5/16-12 UN-2B	ISO 11926-1
M1/M2	A-B ports pressure gauge	13G - G1/4	ISO 1179-1
M3	Charge pressure	7/8-14 UNF-2B	ISO 11926-1
M4/M5	Gauge control pressure	7/16-20 UNF-2B	ISO 11926-1
T1/T2	Gauge case drain	1 1/6-12-UN-2B	ISO 11926-1
T3	Drain temperature port	13G - G1/4	ISO 1179-1

OPERATING PARAMETERS

Operating parameters

			PW/PWe085	PW/PWe096
	Minimum		50	00
Speed	Nominal	min ⁻¹ (rpm)	20	00
ratings	Max. continuous		36	50
	Max. intermittent	_	38:	50
Maximum p	oressure (port A or B)		450 [6527]	400 [5802]
Maximum p	peak pressure (port A or B)		500 [7252]	450 [6527]
Charge pre	essure (port M3)		30 [4	435]
Minimum p	ressure at charge inlet (port S)	bar [PSI]	bar [PSI] 0,7 [10.2]	
Continuous case drain (port T1 or T2)			3 [43.5]	
Intermittent case drain (port T1 or T2)			5 [72.5]	
Pressure in piloting chamber (port M4 or M5)			30 [435]	
Mass mom	ent of inertia of rotating components	kg.m ² [slug.ft ²]	0,0127 [0.0091]	0,0125 [0.0089]
Pump torquat v _{g max} and		Nm [in.lbf] Δp = bar [PSI]	582 [5151] ∆p = 430 [6237]	580 <i>[5133]</i> ∆p = 380 <i>[5511]</i>
Theoretical Power		kW [hp]	223 [[299]
at v _{g max} , ma	ax. continuous speed and Δp	∆p = bar [PSI]	Δp = 430 <i>[6237]</i>	Δp = 380 [5511]

Charge pressure

A charge flow is required to maintain a positive pressure in the low pressure loop of a closed loop hydrostatic transmission. Charge pressure ensures proper lubrication and rotating group operation. It is recommended to maintain the charge pressure at a minimum of 6 bar [87 PSI] above case pressure. For more details, refer to charge pump paragraph, page 21.

Case pressure

Case pressure must be maintained within the limits shown in the table "Operating parameters". Ensure that housing is always filled with hydraulic fluid and especially during start-up of the machine.

Pressure ratings

Maximum peak pressure

It is the maximum allowable pressure. A self-propelled machine can reach the maximum peak pressure value no more than 1-2% of that work cycle.

Work cycle

A fundamental factor for ensuring correct hydrostatic transmission sizing is the machine work cycle (pressure-time ratio, seasonality, pressure vs. percentage of time at max. displacement, machine type). Part service life depends on the correct choice in relation to the work cycle.

Overloads

It is mandatory to protect parts against any possible overloads.

Speed ratings

The table "Operating parameters" gives minimum and maximum rated speeds.

Maximum speed is the highest operating speed allowed. Over speeding reduces pump life time, can lead to loss of hydrostatic power and braking capacity. Never exceed the maximum speed limit under any operating conditions.

Nominal speed is the speed offering the maximal efficiency.

21/04/2016 11

Poclain Hydraulics recommandations for fluid

Poclain hydraulics recommends the use of hydraulic fluids defined by the ISO 15380 and ISO 6743-4 standards. For temperate climates, the following types are recommended.

- HM 46 or HM 68 for fixed installations.
- HV 46 or HV 68 for mobile installations.
- · HEES 46 for mobile installations.

These specifications correspond to category 91H of the CETOP standard, parts 1, 2 and 3 of the DIN 51524 standard, and grades VG32, VG 46 and VG68 of the ISO 6743-4 standards.

It is also possible to use ATF, HD, HFB, HFC or HFD type hydraulic fluid upon Poclain Hydraulics specific approval of the components' operating conditions.

Standardized designations for the fluids

- **HM**: Mineral fuids having specific antioxidant, anticorrosion and antiwear properties (HLP equivalent to DIN 51524 parts 1 and 2).
- HV: HM mineral fluids providing improved temperature and viscosity properties (DIN 51524 part 3).
- HEES :Biodegradable fluids based on organic esters.

It is also possible to use a fluid that meets the biodegradability criteria and is compatible in the event of accidental food contact. The BIOHYDRAN FG 46 fluid designed by the company Total has undergone testing of its properties and performance on our test benches. Since this type of fluid has not yet been categorized, it is the responsibility of machine manufacturers to validate its compatibility with all of the components used in order to guarantee that the intended functions will be fulfilled and this for the desired life time of all equipment items.

For biodegradable fluids, consult your Poclain Hydraulics' application engineer.

During operation, the temperature of the oil must be between 0° C [32°F] and 80° C [176°F]; the minimum and maximum temperatures may be exceeded momentarily by $\pm 20^{\circ}$ C [$\pm 68^{\circ}$ F] for a duration of less than 30 minutes. For all applications outside these limits, please consult with your Poclain Hydraulics' application engineer.

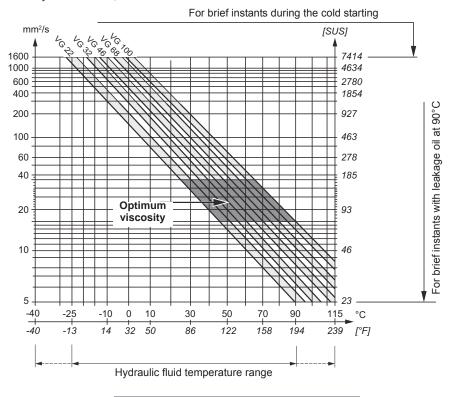
POCLAIN HYDRAULICS

Fluid and filtration

To prevent premature wear, it is imperative that only clean fluid enter the hydrostatic transmission circuit. A filter capable of controlling the fluid cleanliness to ISO 4406 class 22/18/13 (SAE J1165) or better under normal operating conditions is recommended.

The filter may be located either on the inlet (suction filtration) or discharge (charge pressure filtration) side of the charge pump. The selection of a filter depends on a number of factors including the contaminant ingression rate, the generation of contaminants in the system, the required fluid cleanliness, and the desired maintenance interval. Filters are selected to meet the above requirements using rating parameters of efficiency and capacity.

Filter efficiency may be measured with a Beta ratio (β_X) . For simple suction-filtered closed circuit transmissions and open circuit transmissions with return line filtration, a filter with a β -ratio within the range of β_{35-45} = 75 ($\beta_{10} \ge 2$) or better has been found to be satisfactory. For some open circuit systems, and closed circuits with cylinders being supplied from the same reservoir, a considerably higher filter efficiency is recommended. This also applies to systems with gears or clutches using a common reservoir. For these systems, a charge pressure or return filtration system with a filter β -ratio in the range of β_{15-20} = 75 ($\beta_{10} \ge 10$) or better is typically required.


Because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system.

Viscosity range

For both max. efficiency and life of the unit, the operative viscosity should be chosen within the optimum range of: √opt = optimum operating viscosity from 16 to 36 mm²/s [from 74.1 to 166.8 SUS] referred to the closed loop temperature.

Working conditions: the following limits of viscosity apply

√min = 5 mm²/s [23 SUS] short-duration at a max. permissible leakage oil temperature of 90° C [194°F] $\sqrt{\text{max}} = 1000 \text{ mm}^2/\text{s}$ [4 634 SUS] short-duration, on cold start.

Ensure fluid temperature and viscosity limits are concurrently satisfied.

21/04/2016 13

Technica

installation

¹ Filter β-ratio is a measure of filter efficiency defined by ISO 4572. It is defined as the ratio of the number of particles greater than a given diameter ("x" in microns) upstream of the filter to the number of these particles.

SYSTEM DESIGN PARAMETERS

Consult your Poclain Hydraulics application engineer to validate your design parameters before using the pump in your application.

Sizing equations

The following equations are helpful when sizing hydraulic pumps. Generally, the sizing process is initiated by an evaluation of the machine system to determine the required motor speed and torque to perform the necessary work function. First, the motor is sized to transmit the maximum required torque. The pump is then selected as a flow source to achieve the maximum motor speed.

	Output flow Q	$= \frac{V_g.n.\eta_v}{1000}$	(l/min)
SI units	Input torque M	$= \frac{V_g \cdot \Delta_p}{20.\pi \cdot \eta_m}$	(N.m)
	Input power P	$= \frac{M. n.\pi}{30 000} = \frac{Q.\Delta_p}{600.\eta_t}$	(kW)
	Output flow Q	$= \frac{V_g.n.\eta_v}{231}$	[GPM]
US units	Input torque M	$= \frac{V_g \cdot \Delta_p}{2 \cdot \pi \cdot \eta_m}$	[lbf.in]
	Input power P	$= \frac{M.n.\pi}{198\ 000} = \frac{Q.\Delta_p}{1714.\eta_{\dagger}}$	[hp]

$$\begin{split} &V_g \text{=} \text{Displacement per revolution cm}^3 / \text{tr } [\text{in}^3/\text{rev}] \\ &\Delta p = p_o - p_i \text{ (system pressure) bar } [PSI] \\ &n = \text{Speed min}^{-1} [\text{rpm}] \\ &\eta_v = \text{Volumetric efficiency} \\ &\eta_m = \text{Mechanical efficiency} \\ &\eta_t = \text{Overall efficiency } (\eta_t, \eta_m) \end{split}$$

Redundant braking system requirement

Unintended vehicle or machine movement hazard.

The loss of hydrostatic drive line power, in any mode of operation (forward, neutral, or reverse) may cause the system to lose hydrostatic braking capacity. You must provide a braking system, redundant to the hydrostatic transmission, sufficient to stop and hold the vehicle or machine in the event of hydrostatic drive power loss.

Reservoir

The reservoir provides clean fluid, dissipates heat, and removes entrained air from the hydraulic fluid. It allows for fluid volume changes associated with fluid expansion and cylinder differential volumes. Minimum reservoir capacity depends on the volume needed to perform these functions. Typically, a capacity of one half of the charge pump flow (per minute) is satisfactory for a closed reservoir. Open circuit systems sharing a common reservoir require greater fluid capacity.

Locate the reservoir outlet (suction line) near the bottom, allowing clearance for settling foreign particles. Use a 100 - 125 µm screen covering the outlet port.

Place the reservoir inlet (return lines) below the lowest expected fluid level, as far away from the outlet as possible.

Use a baffle (or baffles) between the reservoir inlet and outlet ports to promote de-aeration and reduce fluid surging.

Case drain usage for tandem pump

A case drain line must be connected to one of the case outlets (T1 or T2) to return internal leakage to the system reservoir. The higher of the two case outlets should be used to promote complete filling of the case. Since the case drain fluid is typically the hottest fluid in the system, it is advantageous to return this flow through heat exchanger.

21/04/2016 15

Bearing life and external shaft loading

Bearing life:

Bearing life is a function of speed, pressure, swashplate angle and external loads. Oil type and viscosity impact bearing life.

	Bearing life (B ₁₀ hours)		
	Standard 4-bolt flange 2-bolt flange (option M)		
PW/PWe085	34 000	26 500	
PW/PWe096	23 000	17 700	

Normal bearing life in B₁₀ hours is shown in the above table. Figures have been calculated under the following operating conditions: Continuous differential pressure of 320 bar *[4 641 PSI]*, 2000 rpm shaft speed, maximum displacement, without any external shaft side load. The data is based on a 50% forward, 50% reverse duty cycle, standard charge pump size, and standard charge pressure.

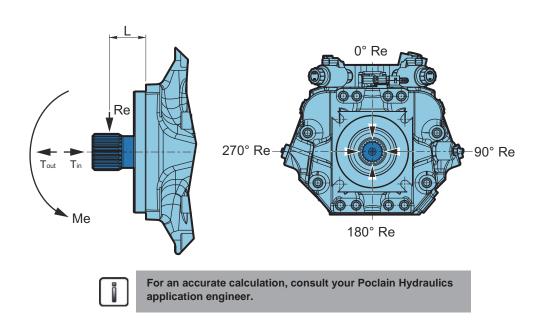
Shaft Loads:

PW/PWe 085-096 pumps are designed with bearings that can accept external radial and thrust loads. The external radial shaft load limits depend on the load position, orientation, and operating conditions of the unit.

The maximum permissible radial load (Re), is based on the maximum external moment (Me), and the distance (L) from the mounting flange to the load. It may be determined using the table and formula below. Thrust (axial) load limits are also shown.

$$Re = Me / L$$

All external shaft loads affect bearing life. In applications with external shaft loads, minimize the impact by positioning the load at 0° or 180° as shown in the figure.


Contact your Poclain Hydraulics representative for an evaluation of unit bearing life if:

- · Continuously applied external loads exceed 25 % of the maximum allowable radial load Re.
- The pump swashplate is positioned on one side of center all or most of the time.
- The unit bearing life (B₁₀) is critical.

Radial load position

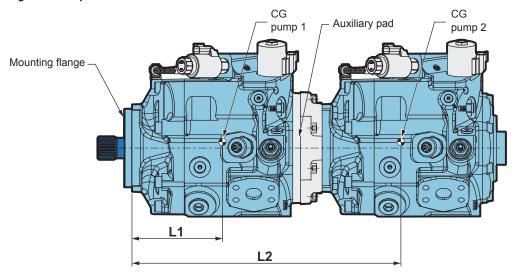
	External moment (Me)	Maximum shaft thrust in (T_{in})	Maximum shaft thrust out (T _{out})
	N.m [in.lbf]	N [lbf]	N [lbf]
PW/PWe085 PW/PWe096	120 [1062]	4000 [899]	2400 [540]

at 200 bar [2901 PSI] and 2000 rpm

Hydraulic unit life

Hydraulic unit life is the life expectancy of the hydraulic components. It depends on speed and system pressure. High pressure, generated by high load, reduces hydraulic unit life.

Design the hydraulic system according to the expected machine duty cycle. Take in consideration the expected percentages of time at various loads and speeds. Ask your Poclain Hydraulics representative to calculate an appropriate pressure based your hydraulic system design. If duty cycle data is not available, input power and pump displacement are used to calculate system pressure.


All pressure limits are absolute pressures.

PWe085 / PWe096 pumps will meet satisfactory life expectancy if applied within the parameters specified in this technical documentation. For more detailed information see Operating Parameters on 11.

Mounting flange loads

Adding tandem mounted pumps, and/or tandem auxillary pump(s), subjecting pumps to shock loads may generate excessive loads on the front mounting flange. The overhung load moment for multiple pump mounting can be estimated as shown in the figure bellow

Overhung load example

Estimating overhung load moments

W = Weight of pump (kg)

L = Distance from mounting flange to pump center of gravity (CG)

 $M_R = G_R (W_1L_1 + W_2L_2 + ... + W_nL_n)$

 $M_S = G_S (W_1L_1 + W_2L_2 + ... + W_nL_n)$

Where:

 M_R = Rated load moment (N.m)

M_S = Shock load moment (N.m)

 G_R^* = Rated (vibratory) acceleration (m/sec²) = 10*g

 G_S^* = Maximum shock acceleration (m/sec²) = 20*g

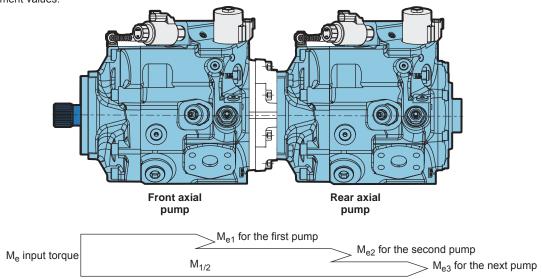
*Calculations is carried out by multiplying the gravity (g = 9.81 m/sec²) with a given factor.

Allowable overhung load moment are shown in the table below. Exceeding these values requires additional pump support.

	Rated moment (M _R) N.m [in.lbf]	Shock load moment (M _S) N.m [in.lbf]
4-bolt mounting flange	4200 [37 173]	8400 [74 346]
2-bolt mounting flange (option M)	1400 [12 391]	4000 [35 403]

For an accurate calculation, consult your Poclain Hydraulics application engineer.

21/04/2016


17

Tandem pumps

For tandem definition ensure that:

- maximum shaft and coupling torques will not be exceeded, see section "Mounting flange and shafts", page 25 and "Auxiliary mounting pad", pages 26 to 28.
- maximum overhung load moment will not be exceeded otherwise use of additional pump support will be needed, see the page 17 for allowable moment values.

Contact your Poclain Hydraulics application engineer for specific tandem configurations.

Model

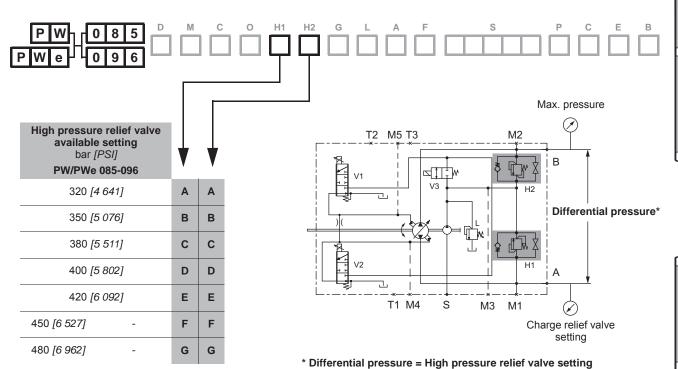
Technical specifications

Operating Parameters

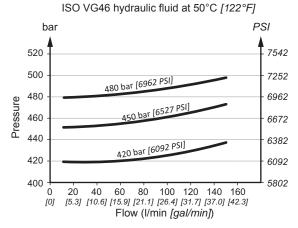
System design Parameters

FEATURES

High pressure relief valve


The high pressure relief valves maintain circuit pressure in the proper range. The check valves allow charge flow to replenish the low pressure loop of the circuit. The high pressure relief valves ensure a high pressure protection of the high pressure loop of the circuit.

High pressure relief valves are available in a range of settings with tolerance ± 15 bar [218 PSI].


Bypass of A and B ports is integrated in high pressure relief valves. The bypass connect the ports A-B and must be used only in emergency case and only for short movement.

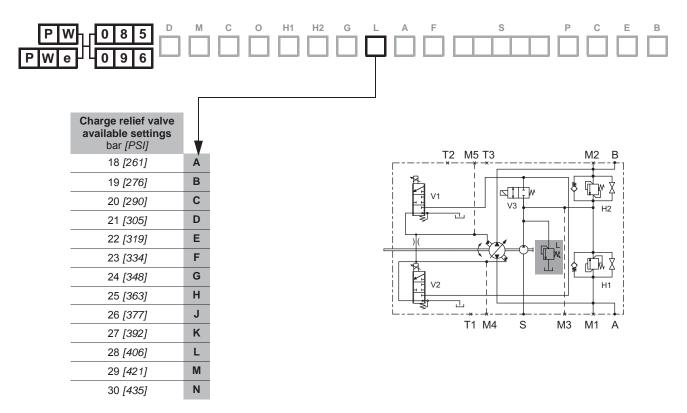
High pressure relief valves are intended for transient overpressure protection and are not intended for continuous pressure control. Flow over relief valves for extended periods of time may result in severe heat build up. High flows over relief valves may result in pressure levels exceeding the nominal valve setting and potential damage to system components.

(Max. pressure = HPRV setting + CPRV setting)

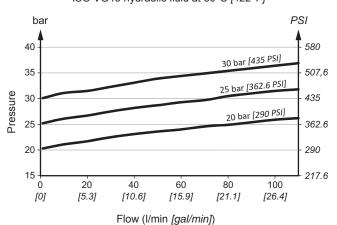
High pressure relief valve

Max flow through relief function is 150l/min.

21/04/2016


Charge pressure relief valve

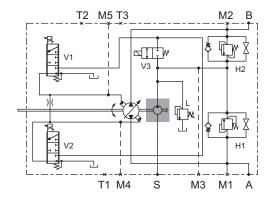
The charge pressure relief valve provides a relief outlet for charge circuit. This valve is used to set the charge pressure of the circuit. Flow through the valve is ported to case.


The nominal charge relief setting is referenced to case pressure.



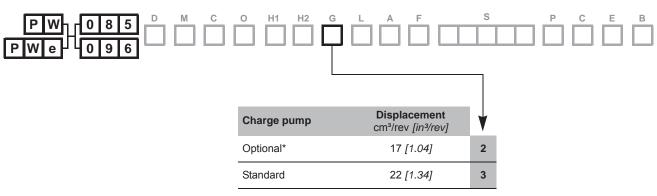
Incorrect charge pressure settings may result in the inability to build required system pressure and/or inadequate loop flushing flows. Ensure correct charge pressure under all conditions of operation to maintain pump control performance.

ISO VG46 hydraulic fluid at 50°C [122°F]



Charge pump

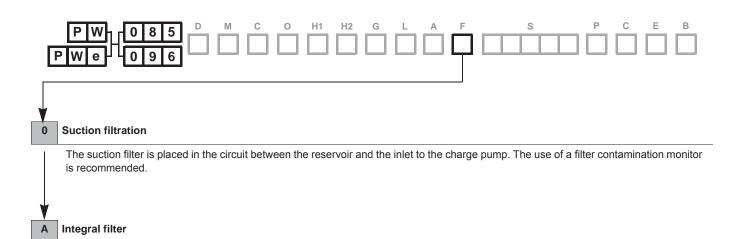
Charge flow is required on all PW/PWe 085-096 pumps used in closed circuit installations. The charge pump provides flow to make up internal leakage, maintain a positive pressure in the main circuit, provide flow for cooling and filtration, replace any leakage losses from external valving or auxiliary systems, and to provide flow and pressure for the control system.

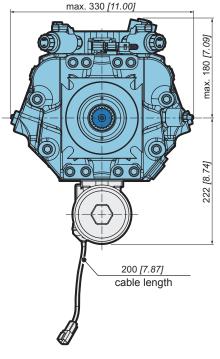

Many factors influence the charge flow requirements. These factors include system pressure, pump speed, pump swashplate angle, type of fluid, temperature, size of heat exchanger, length and size of hydraulic lines, control response characteristics, auxiliary flow requirements, hydrostatic motor type, etc.

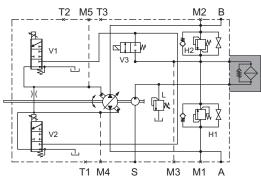
Unusual application conditions may require a more detailed review of charge pump sizing. Charge pressure must be maintained at a specified level under all operating conditions to prevent damage to the transmission. Poclain Hydraulics recommends testing under actual operating conditions to verify this.

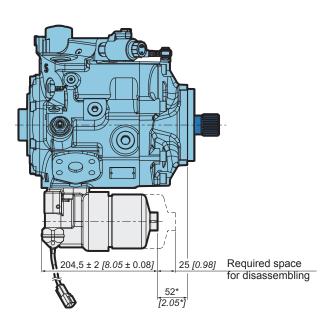
Charge pump sizing/selection

In most applications a general guideline is that the charge pump displacement should be at least 20% of the main pump displacement.

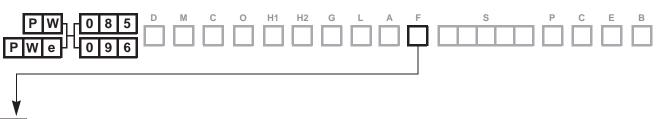

^{*} not available for PW096


Contact your Poclain Hydraulics application engineer for more information.


21/04/2016

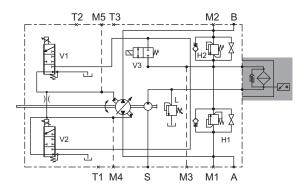


Filtration

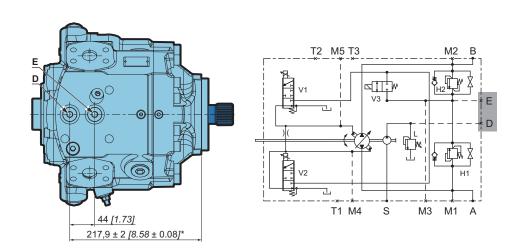


* 38 [1.50] for 2-bolt bearing flange (option M)

Filter characteristic			
Max. operating pressure	40 bar [580 PSI]		
Operating	-30°C~ 100°C		
temperature	[-22°F ~ 212°F]		
Connector	Deutsch DT04-2P		
Protection	IP67		



Filtration


Integral filter with pollution indicator

Integral filter can be equipped with pollution indicator for early warning that the filter needs to be cleaned or replaced.

C Remote pressure filtration

The pressure filter can be mounted remotely for easy servicing. A 100-125 μ m mesh screen, located in the reservoir or the charge inlet line, is recommended when using charge pressure filtration. The remote pressure filter has to be capable to withstand charge pressure.

* 203,9 \pm 2 [8.03 \pm 0.08] for 2-bolt bearing flange (option M)

Port	Function	Size	Norm
D	Charge filtration port - filter input	7/8-14 UNF-2B	ISO 11926-1
E	Charge filtration port - filter output	770-14 ONI -2D	130 11320-1

Model Code

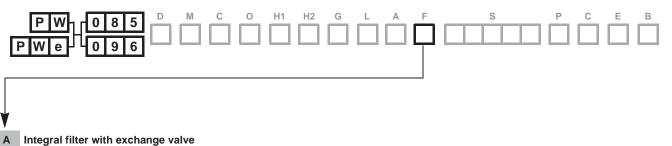
Technical specifications

Operating Parameters

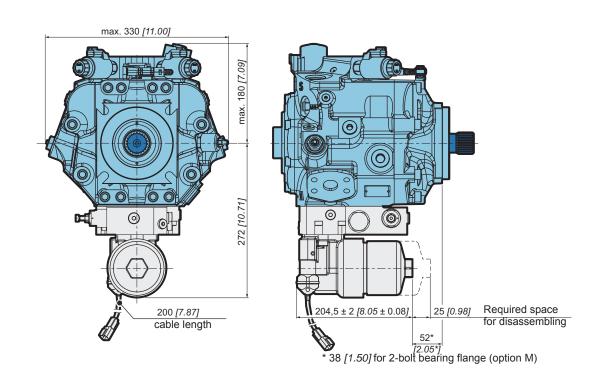
System design

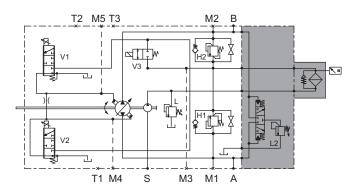
Features

Controls

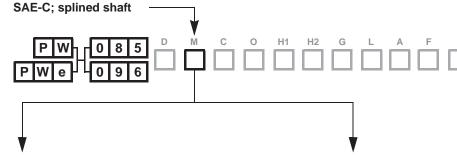

PWe installation

PWe package

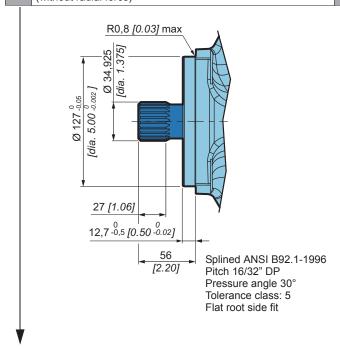

Options


21/04/2016

Filtration

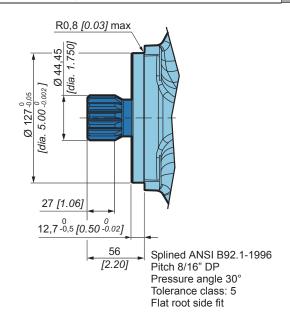


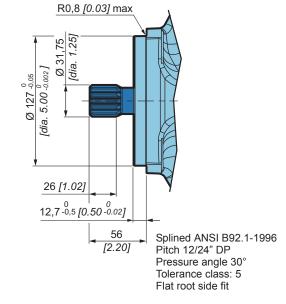
Integral filter with pollution indicator and with exchange valve



Mounting flange and shafts

2 21 teeth; Shaft torque: 820 Nm [7 258 in.lbf] (without radial force)

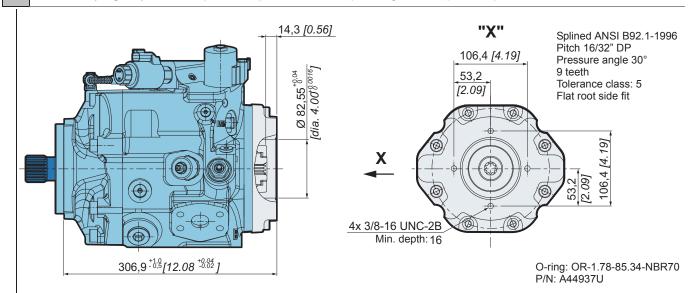

23 teeth; Shaft torque: 1000 Nm [8 851 in.lbf] (without radial force)



R0,8 [0.03] max 38, ldia. Ø -0.002 J Ø 127-0,05 [dia. 5.00] 27 [1.06] 12,7 -0,5 [0.50 -0.02] 56 Splined ANSI B92.1-1996 [2.20] Pitch 16/32" DP Pressure angle 30° Tolerance class: 5 Flat root side fit

13 teeth; Shaft torque: 1500 Nm [13 276 in.lbf] (without radial force)

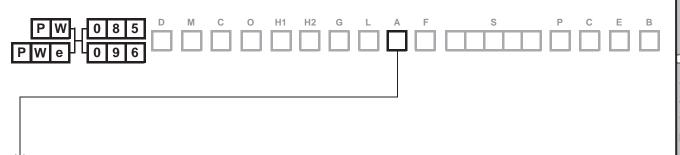
6 14 teeth; Shaft torque: 600 Nm [5 310 in.lbf] (without radial force)


Auxiliary mounting pad

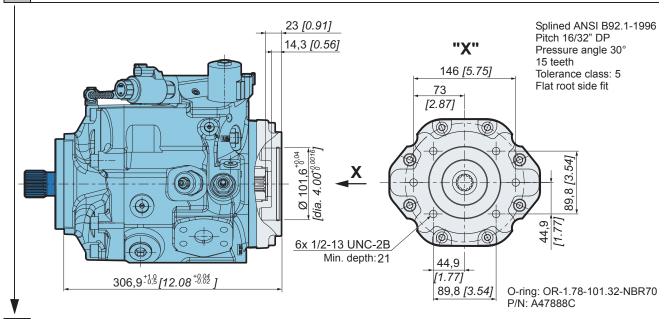
Without auxiliary mounting pad

See chapter "Technical specifications", for pump layout.

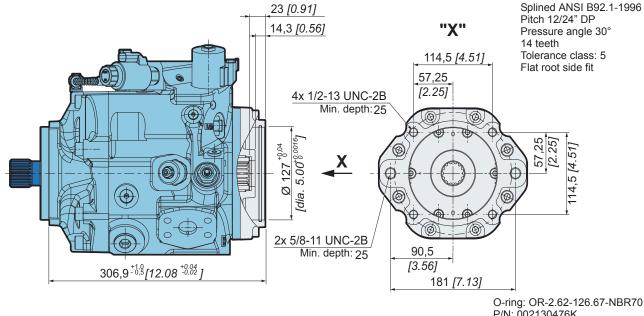
SAE-A; Coupling torque: 113 Nm [1000 in.lbf]; minimum active spline lenght: 10 mm [0.39 inch]



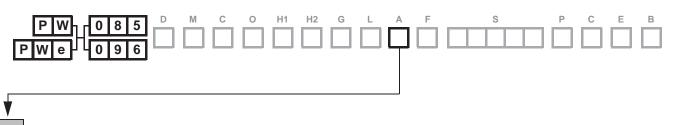
SAE-B; Coupling torque: 283 Nm [2505 in.lbf]; minimum active spline lenght: 12 mm [0.47 inch]



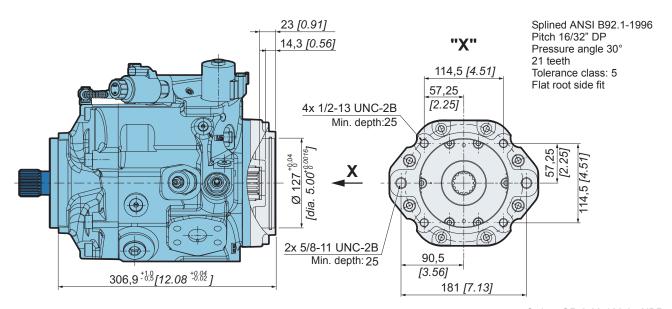
O-ring: OR-1.78-101.32-NBR70 P/N: A47888C


Auxiliary mounting pad

SAE-BB; Coupling torque: 407Nm [3602 in.lbf]; minimum active spline lenght: 13 mm [0.51 inch]



SAE-C; Coupling torque: 701 Nm [6204 in.lbf]; minimum active spline lenght: 14,5 mm [0.57 inch]



P/N: 002130476K

Auxiliary mounting pad

SAE-C; Coupling torque: 918 Nm [8125 in.lbf]; minimum active spline lenght: 15 mm [0.59 inch]

O-ring: OR-2.62-126.67-NBR70 P/N: 002130476K

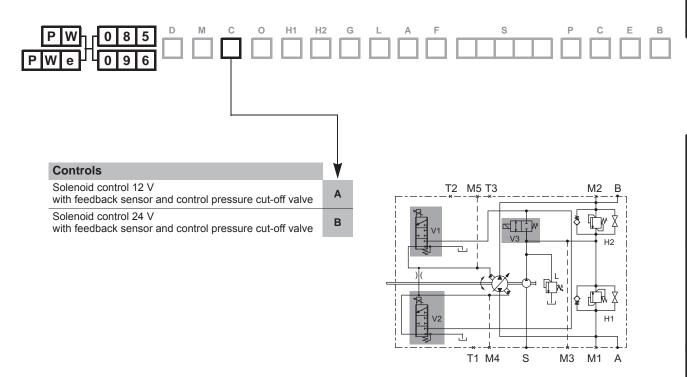
CONTROLS

Solenoid control with feedback sensor and cut-off valve

Features:

Proportional electronic control driven by Poclain Hydraulics electronic boxes:

- Our electronic control boxes control the displacement and the direction of the flow while monitoring permanently the functioning parameters of the engine and of the complete hydraulic system.
- Two contamination resistant (IP69K) solenoid valves controls the displacement and the direction of the flow.
- A sensor linked to the swash plate monitors permanently the actual displacement setting.


Control pressure cut-off valve:

- Ensures the safe return of pump to neutral position in case of electronic failure or control valves pollution.
- Ensures that machine will not move until proper activation of the pump control.

For some special application where the pump is not used as main drive (e.g. assist drive) the cut-off valve is not mandatory, see chapter Options, "Without control pressure cut-off valve", page 58.

	Shaft rotation			
	Clockwise		Counter clockwise	
Actuated solenoid	V1	V2	V1	V2
Servo cylinder	M5	M4	M5	M4
Port A flow	inlet	outlet	outlet	inlet
Port B flow	outlet	inlet	inlet	outlet

Model

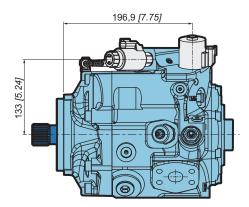
Technical specifications

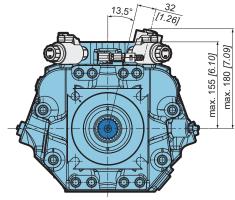
OperatingParameters

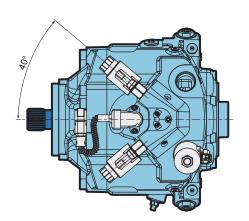
System design Parameters

Features

Controls


PWe installation


PWe package


Options

Solenoid control with feedback sensor and cut-off valve

Position sensor specification		
Supply voltage 5 VDC		
Supply current	0,012 A max.	
Connector type	Deutsch DTM04-3P	
Protection IP67		
Sensor resolution	8,5°/V	

Connector wiring	
Pin 1	Ground
Pin 2	Output signal (0,4 to 4,5V)
Pin 3	Supply voltage

Pump displacement	Feedback angle for max. displacement
DM/DMe OOF OOG	4.49

Solenoids specification		
Operating voltage	12 VDC ± 10%	24 VDC ± 10%
Resistance at 50°C [122°F]	9,4 Ω	37,2 Ω
Resistance at 20°C [68°F]	6,4 Ω	26,2 Ω
Rated current	1,15 A	0,59 A
Connector type	Deutsch DT04-2P	
Power	22 W	
Protection	IP69K	
Mass	0,24 kg [0.53 lb]	

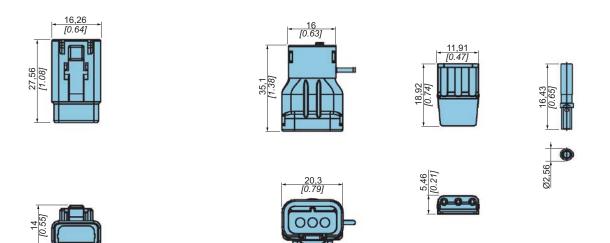
Cut-off valves specification		
Operating voltage	12 VDC	24 VDC
Resistance at 20°C [68°F]	7,1 Ω	28,5 Ω
Initial current draw	1,7 A	0,8 A
Connector type	Deutsch DT04-2P	
Power	20,5 W	18,2 W
Protection	IP69K	
Mass 0,41 kg [0.90 lb]		[0.90 lb]

Model Code

Technical specifications

3-pin DTM Deutsch connector

√ for PW pump only


Commercial name	KIT-CONNECT-DTM-3S-NW8.5
Part number	B02468G
Compatibility	Position sensor

Features			
Manufacturer		Deutsch	
Components	1 Deutsch connector DTM	DTM 06-3S	
	1 Backshell 180° NW8.5	1028-005-0305	
	1 Wedgelock	WM-3S	
	4 socket contact size 20	0462-201-20141	
Wire section	0.2 to 0.5 mm ²		
Cable diameter	1.35 to 3.05 mm		
Operating temperature	-55°C to +125°C [-40°F to +257°F]		
Ingress Protection	IP6K9K		

Mounting tool

Crimp tool: HDT-48-00

Layout

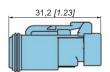
21/04/2016

2-pin DT Deutsch connector

✓ for PW pump only

Commercial name	KIT-CONNECT-2-PIN-DEUTSCH
Part number	A42310P
Compatibility	Electro valve

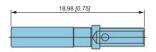
Features			
Manufacturer		Deutsch	
Components	1x Deutsch connector DT	DT 06-2S	
	1x Wedgelock	W2S-P012	
	3x socket contact	0462-201-16141	
Wire section	0.5 to 0.1 mm ²		
Cable diameter	2.23 to 3.68 mm		
Operating temperature	-55°C to +125°C [-40°F to +257°F]		
Ingress Protection	IP67		


Mounting tool

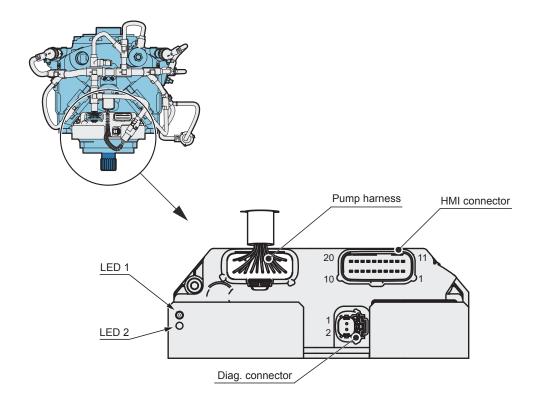
Crimp tool: HDT-48-00


Layout

Connector Wedgelock



Socket contact



PWE INSTALLATION

PWe ECU description

- The pump is delivered with its ECU (Electronic control unit) and its harness assembled.
 The ECU is already programmed to manage the pump in according to the command interface.
- The pump management can be optimized in using PWe Configurator software.

HMI	connector

		THAIL COLLINECTOL	
PIN	Name	Function	Wire gauge (mm ²)
1	DIGOUT_4	Digital output 4	0,75 to 1
2	DIGOUT_1	Fault lamp	0,75 to 1
3	DIG_2	Reverse_in	0,35 to 0,5
4	DIG_4	Neutral_in	0,35 to 0,5
5	NC	Not connected	
6	ANA_6	Inching/Braking pedal	0,35 to 0,5
7	CAN1L	Vehicle CAN 1 bus low	0,35 to 0,5
8	CAN1H	Vehicle CAN 1 bus high	0,35 to 0,5
9	AGND	Analog ground	0,35 to 0,5
10	VBAT -	Battery -	1,5 to 2
11	DIGOUT_3	Not used	0,75 to 1
12	DIGOUT_2	Brake lamp relay	0,75 to 1
13	DIG_1	Forward_in	0,35 to 0,5
14	DIG_3	P-brake_in	0,35 to 0,5
15	DIG_5	Operator presence	0,35 to 0,5
16	ANA_5	Travel pedal/Joystick/Inching	0,35 to 0,5
17	UN_1	Pump speed signal	0,35 to 0,5
18	UN_2	Joystick/Travel pedal	0,35 to 0,5
19	5V SENSOR	5V sensor supply	0,35 to 0,5
20	VBAT+	Battery +	1,5 to 2

Diag. connector

PIN	Name	Function	Wire gauge (mm ²)
1	CAN2H	PH CAN bus high	0,35 to 0,5
2	CAN2L	PH CAN bus low	0,35 to 0,5

21/04/2016

PWe ECU characteristics	
Operating voltage	8 V to 32 V
Operating temperature	- 40°C to 100°C [-40 °F to 212°F]
Material	PA66 30% GF; Silicon (potting)
Mass	0,225 kg ±10% [0,496 lb] ±10%
Ingress protection (with mating connectors mounted)	IP6K9K (ISO20653)
12V system max current	17 A
24V system max current	8,5 A
Performance level	Capacity to reach PL d level according to ISO13849:2006 standard
Mean Time To Failure (MTTF)	162 years (duty cycle is 229 days of 8 hours)
Mean Time To Dangerous Failure (MTTFd)	324 years
Diagnostic Coverage (DC)	95.4 %
Category	2
Electrical protection	Over-voltage, reverse polarity (with fuse), ground and battery short circuit
ECU programming	Programming with a PC using the PHASES™-CT software application
ECU set-up	Set-up with the software PHASES™-CT
Digital inputs	5
Analog inputs (AN)	7
Universal inputs	2
HSD PWM outputs	4
HSD DIG 2,6A outputs	2
HSD DIG 0,5A outputs	2
Sensor supply 5V	1

PWe ECU environmental performances

Туре	Standard	Parameters
EC marking	2004/108/EC	
Electro-Magnetic Compatibility	EN/ISO14982:2009	Agricultural and forestry machines
Electro-Magnetic Compatibility	EN13309:2010	Construction machines
Electro-Magnetic Compatibility	EN12895:2000	Forklifts
E marking	2004/104/EC	Automotive EMC directive

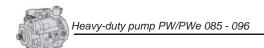
PWe ECU input characteristics

Digital inputs

- These inputs are active in high side
 They are protected against short circuits to ground, battery and over voltage up to +48 V

They are protected against enounce to grown a, battery and ever voltage up to		
Input range	0 to 32 V	
Max voltage for low level	1,75 V	
Max voltage for high level	3,25 V	
Switch current	10 mA under 28 V	

Analog inputs


- These inputs are populated to perform 0-5V measurement.
 These inputs are protected against short-circuit to ground and battery.

These inputs are protested against short should be ground and sattery.		
Input range	0 to 5V	
Input resistance	>170 kΩ	
Resolution	12 bits	
Full scale accuracy	1%	

Universal inputs

Input range	1 Hz to 8500 Hz
Max voltage for low level	1,65 V
Max voltage for high level	3,85 V
Switch current in PNP mode	15 mA (input at 28 V)
Switch current in NPN mode	10 mA (input at 0 V, supply voltage at 28 V)
Accuracy	< 1%

21/04/2016

PWe ECU output characteristics

PWM outputs 2A at 12V (1A at 24V)

These outputs can be configured in PWm mode and current control.	
DC voltage (ON state)	>(Battery voltage - 1V)
DC current control	2 A max. at 12V and 1A max. at 24V
PWM frequency 100 to 500 Hz	
PWM duty cycle	0 or 5% to 100% Resolution of 0,6%

Digital outputs 2,6A (STOR 3/4) at 12V (1,3A at 24V)

DC voltage (On state)	>(Battery voltage - 1V)
DC current	2,6 A max.(inductive load) at 12V and 1,3A at 24V

Digital outputs 0,5A (STOR 1/2)

DC voltage (On state)	>(Battery voltage - 1V)
DC current	0,5 A max. (resistive load)

Sensor supply 5V output

concor capping or carpar	
DC voltage (On state)	5V ±2%
DC current	200 mA max.

Communication

PWe controller has 2 CAN standard 2.0A or extended 2.0B buses, whose speed can reach 500 kb/s max.

CAN 1 is used to communicate with customer machine.

CAN 2 is used for downloading, diagnostic and communication with other Poclain Hydraulics components.

LED

PWe controller has 2 LEDs for diagnostic:

LED 1 is green and is used to check that the power supply is ON.

LED 1 OFF: ECU not correctly powered or ECU problem.

LED 2 is bi-colour (red of green) and is controlled by applicative software for diagnostic:

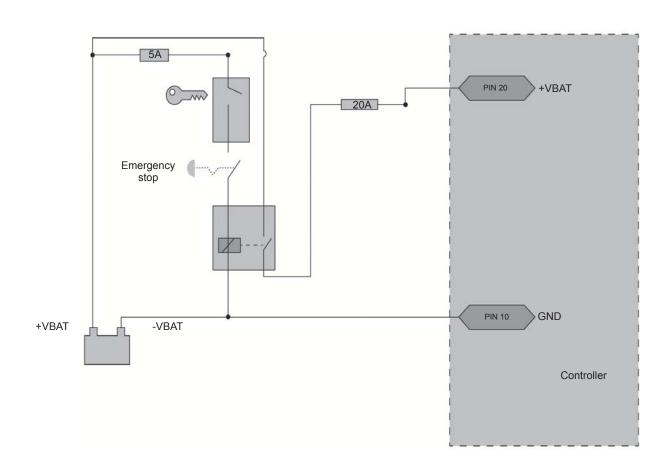
5Hz red blinking: Safety error
1Hz red blinking: System error
1 green flash at 2Hz: pump stroked
1 green flash at 1Hz: wait for initial condition (safety check)
Fixed green: pump in neutral
1 orange flash 1Hz: Parameter load failure
2 orange flash 1Hz: Wrong MAF
LED OFF: ECU problem

If some of these conditions are active simultaneously, the LED will light according to the first condition and then will be OFF for 0,5s and light again according to the second condition ...

Wiring

CAN bus

The CAN bus must be wired using shielded or unshielded twisted pair. CAN bus must be wired according to SAE J1939-11 or SAE J1939-15.

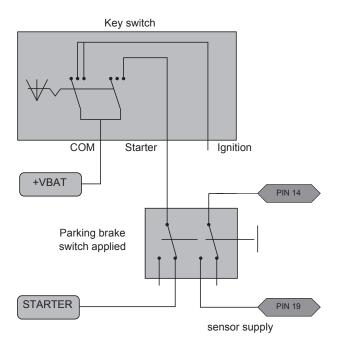

If the PWe ECU is in end of the line, add a termination resistor of 120Ω . For this Poclain Hydraulics offers 120Ω connector kit (KIT-PLUG-120-DTM-2S: A52539H).

CAN messages information:

All CAN messages information sent by Poclain ECU cannot be used for safety applications. For safety critical data by CAN, please contact your Poclain Hydraulics application engineer.

Supply

The correct wiring of the power supply pin (+VBAT) and pin connected to ground, is shown in previous figure. Power supply must be connected through an automotive fuse SAE J1284 20A.


A-GND pin is used as ground for analog sensors. It should not be connected to vehicle ground.

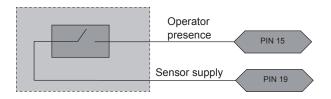
Auxiliary functions

Parking brake:

To prevent vehicle movement during engine start, it is recommended to wire parking brake switch in serial with starter.

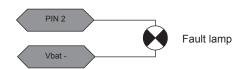
Diagram:

Parking brake lamp:

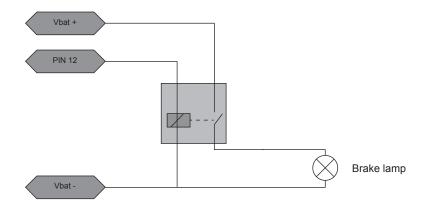

A lamp on the dashboard must give the real status of the parking brake.

The logic must be as follows:

- Lamp on, parking brake applied
- Lamp off, parking brake released


Operator presence switch:

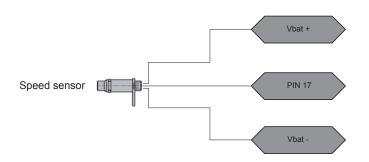
Switch is wired between pin 15 and pin 19, it is open in when operator is not present.


Fault lamp output:

Output is wired between pin 2 and pin 12 and power ground (Vbat-).Lamp has to be relayed.

Brake lamp output:

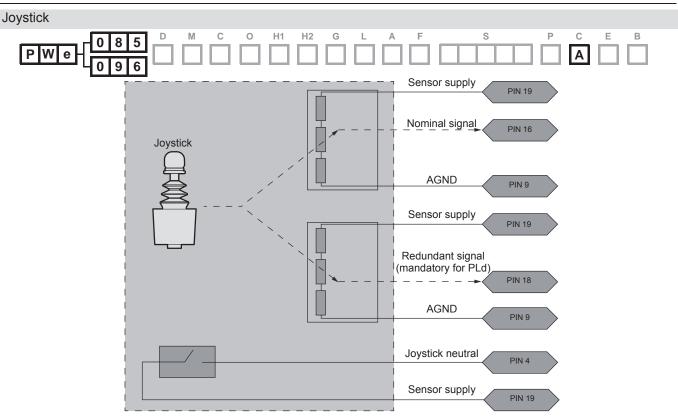
Output is wired between pin 12 and power ground (Vbat-). Lamp has to be relayed.


Vehicle CAN bus:

CAN high is pin 8, CAN low is pin 7.

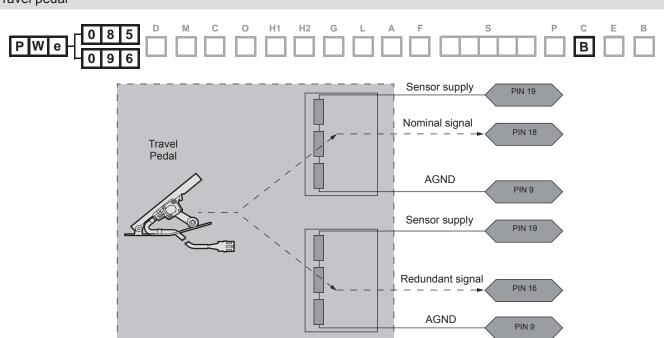
The CAN bus must be wired using shielded or unshielded twisted pair. If the PWe ECU is in end of the line, add a termination resistor of 120Ω . For this Poclain Hydraulics offers 120Ω connector kit (KIT-PLUG-120-DTM-2S: A52539H).

External pump speed signal:


An external pump speed signal can be wired on pin 17.

The pin 17 is used only if there is no speed sensor wired directly on the pump (same input is used).

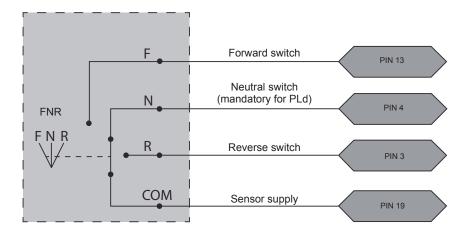
Pump command interface



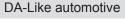
Safety requirements for compliance PLd, the joystick must:

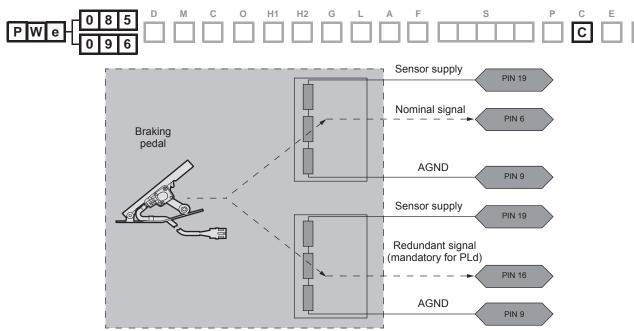
- be powered by the +5V OUT and A_GND
- provide two independent signals:
 - These signals must be between 0.5V and 4.5V to detect open circuits and short circuits.
 - The source signal will vary from 2.5V to 4.5V for forward and 2.5V to 0.5V for reverse.
 - Provide a neutral signal (contact closed in forward or reverse).
 - Not operate (signal has to be out of range 0,5V-4,5V) when supply is in reverse polarity.

It is imperative to perform a calibration in operations of installation / commissioning and maintenance / repair on safety-critical inputs (pedal, joystick, ...), to take account of the complete measurement chain (physical implementation, sensor harness, controller ...). The customer has to use a joystick for EMC directive of machine application field (Offroad/Onroad).



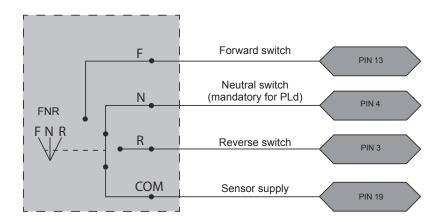
Safety requirements for compliance PLd, the sensor must:


- be powered by the +5V OUT and A_GND
- · provide two independent signals:
 - These signals must be between 0.5V and 4.5V to detect open circuits and short circuits.
 - The signal source should be 0.5V when the pedal is released and 4.5V when the pedal is fully depressed.
 - Not operate (signal has to be out of range 0,5V-4,5V) when supply is in reverse polarity.


It is imperative to perform a calibration in operations of installation / commissioning and maintenance / repair on safety-critical inputs (pedal, joystick, ...), to take account of the complete measurement chain (physical implementation, sensor, harness, controller ...). The customer has to use a travel pedal for EMC directive of machine application field (Offroad/Onroad).

Safety requirements for compliance PLd, the sensor must:

- · Provide three logic signals remain independent
- not be connected to loads (valve) in parallel
- · have gold contacts

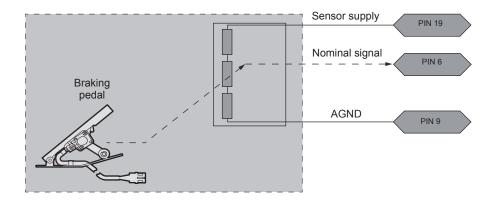


Safety requirements for compliance PLd, the braking pedal must:

- be powered by the +5V OUT and A_GND
- · provide two independent signals:
 - These signals must be between 0.5V and 4.5V to detect open circuits and short circuits.
 - The signal source should be 0.5V when the pedal is released and 4.5V when the pedal is fully depressed.
 - Not operate (signal has to be out of range 0,5V-4,5V) when supply is in reverse polarity.

21/04/2016 41

It is imperative to perform a calibration in operations of installation / commissioning and maintenance / repair on safety-critical inputs (pedal, joystick, ...), to take account of the complete measurement chain (physical implementation, sensor, harness, controller ...). The customer has to use a brake pedal for EMC directive of machine application field (Offroad/Onroad).



Safety requirements for compliance PLd, the sensor must:

- provide three logic signals remain independent
- not be connected to loads (valve) in parallel
- · have gold contacts

Braking-Inching pedal

Safety requirements for compliance PLd, the braking pedal must:

- be powered by the +5V OUT and A_GND
 - This signal must be between 0.5V and 4.5V to detect open circuits and short circuits.
 - The signal should be 0.5V when the pedal is released and 4.5V when the pedal is fully depressed.
 - Not operate (signal has to be out of range 0,5V-4,5V) when supply is in reverse polarity.

It is imperative to perform a calibration in operations of installation / commissioning and maintenance / repair on safety-critical inputs (pedal, joystick, ...), to take account of the complete measurement chain (physical implementation, sensor, harness, controller ...). The customer has to use a brake pedal for EMC directive of machine application field (Offroad/Onroad).

Auxiliaries

Main

0.				
(In	ıara	icte	rist	ICS.

Commercial name		KIT-CONNECT-PWE-CUSTOMER				
Poclain Hydraulics part number			B03982C			
Function		SmartDrive™ C	T PWe controller's Co	ounter-part connectors.		
Compatibility		Electronic transmission	management with Sm	nartDrive™ CT PWe controller.		
Component		Molex reference	Quantity	Wire gauge		
Connector	[00000000]	33472-2001	x1			
Pin	8	33012-3001	x2	1,5 to 2 mm ² [0.0023 to 0.0031 in ²]		
Pin	-	33012-3002	x4	0,75 to 1 mm ² [0.0011 to 0.0015 in ²]		
Pin		33012-3003	x14	0,35 to 0,5 mm ² [0.0005 to 0.0007 in ²]		
Plug		34345-0001	x20			
Insulation diameter			1,5 to 2,5 mn	n [0.05 to 0.098 in]		
Operating temperature			-40°C to 125°	°C [-40°F to 257°F]		

Female communication connector (ECU connector counter-part)

Characteristics

0.1.0.000					
Commercial name		KIT-CONNECT-PWE-DIAG			
Poclain Hydraulics part number			B03983D		
Function		SmartDrive™ CT PWe o	controller's Counter-part connectors.		
Compatibility		Electronic transmission management	nt with SmartDrive™ CT PWe controller.		
Component		Molex reference	Quantity		
Connector		33471-0201	x1		
Pin		33012-3003	x2		

Wire gauge	0,35 to 0,5 mm ² [0.0005 to 0.0007 in ²]
Insulation diameter	1,2 to 2,69 mm [0.047 to 0.105 in]
Operating temperature	-40°C to 125°C [-40°F to 257°F]

Tools

Description		Molex reference	Wire gauge
Crimping tool		63811-5900	1,5 mm ² to 2 mm ²
Crimping tool		63811-6000	0,35 mm ² to 1 mm ²
Pin extractor	MOLEX 63813-1500	63813-1500	

Male communication connector (for cabin usage interface)

Characteristics

Commercial name		KIT-CONNECT-MX2-M			
Poclain Hydraulics part number		B26740P			
Function		Extension of CT-PWe diagnostic	male connector for cabin usage		
Compatibility		Electronic transmission management with SmartDrive™ CT PWe controller.			
Component		Molex reference	Quantity		
Connector		33481-0201	x1		
Pin		33000-1003	x2		

Wire gauge	0,35 to 0,5 mm ² [0.0005 to 0.0007 in ²]
Insulation diameter	1,2 to 2,69 mm [0.047 to 0.105 in]
Operating temperature	-40°C to 125°C [-40°F to 257°F]

Machine safety recommendations

Poclain Hydraulics has identified requirements for the controller, sensors and actuators to meet and satisfy the requirements of a performance level d according to ISO 13849-1 (PLd) at the vehicle system. To quantify for a performance level d (PLd) it is imperative to adhere to at least the following:

A risk analysis must be conducted by the manufacturer to ensure the non-hazardous nature of the machine in case of failure on one of these components.

The safe state is opening of HSD and LSD (Pump coils). The customer must realize a safety analysis of the machine to check that there is no safety aspect due to the opening of the HSD and LSD (Pump back to neutral).

Installation and commissioning:

Upon system design and configuration, it could be needed to perform calibrations of safety critical inputs, to take into account the complete measurement chain (physical implementation, sensor, harness, controller...).

Maintenance and repair:

Any maintenance or repair of the controller shall be done according to the warranty terms. Otherwise, the integrity of the controller and the effectiveness of safety principles can not be guaranteed.

Precaution before maintenance and repair:

Before any maintenance or repair or decommissioning the controller must be disconnected from the power source, in particular before disconnecting interfaces connectors. To perform this operation, it is recommended to disconnect the battery fully after complete stop of the vehicle and its engine.

Operation after maintenance and repair:

After maintenance or repair of the machine, it is necessary to perform a calibration of the safety inputs.

Caution during electric welding:

The connectors on the controller and associated sensors must be disconnected during the electric welding process.

Pump:

The safety state of a hydrostatic transmission is stopped vehicle by a rapid and mastered return to neutral of the pump.

To do so, it is necessary to add:

- restrictors to be correctly sized depending on the application, the machine ... When using multi- displacements motors, provide a bypass valve for these retrictors.
- A cut-off valve, allowing to bypass the supply of the pump.

21/04/2016 45

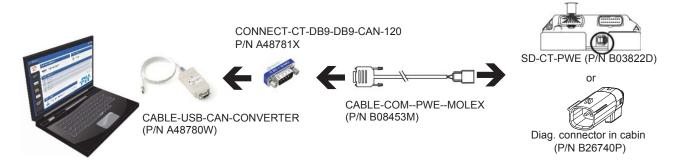
PWe ECU Configurator

PWe ECU Configurator software enables you to configure electronic functions of your PWe pump.

It provides you a ".ct" file that you can use with PHASES CT software to configure your PWe pump.

PWe ECU Configurator application is free and can be downloaded at: http://phases.poclain-hydraulics.com/downloadcenter

"PWe ECU configurator" tool is used to select functions to be activated.

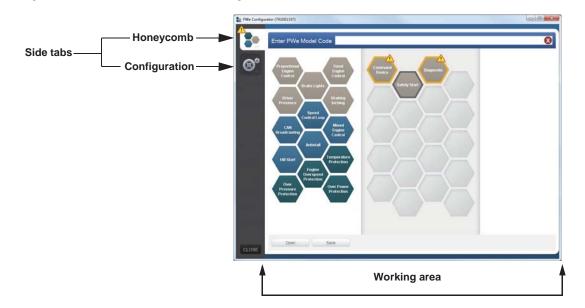

a "Ct file" is created

PHASES CT is used to :

- Download the "CT file" on PWe ECU.
- Adjust and control the operating parameters of the PWe ECU.
- Calibrate and to check the functioning of the sensors connected to the PWe ECU.
- Diagnose the possible malfunctions of the hydrostatic transmission by displaying the logical error log memorized by the PWe ECU.

Install the PHASES™ CT software (see installation guide n° A48679M).

Connect the SmartDrive ™ CT controller to the PC by connecting the PC's USB to controller's communication connector (CAN bus link) via cable COM-CABLE-COM-PWE-MOLEX (P/N B08453M), SUBD9 connector with integrated 120Ω termination resistor and adapter CABLE-USB-CAN-CONVERTER (P/N A48780W). These cables are supplied with PHASES™ CT PWe kit P/N B12234W.



PWe Configurator customization

The user interface provides a simple and intuitive access to the functions and its design is suitable for easy and comfortable use of PWe Configurator on a tablet.

The screen is divided into two areas:

- · Side menu bar which allows navigation through the application.
- Working area where user can interact with his design...

Heavy-duty pump PW/PWe 085 - 096

Side menu bar

The side menu bar is always displayed and contains tabs allowing user to access software modules.

Using software on a tablet holding it by left hand, user can navigate through modules with left thumb, keeping right hand free to interact with working area.

Working area

The working area displays the module selected in the left side menu bar.

The modules are:

Honeycomb

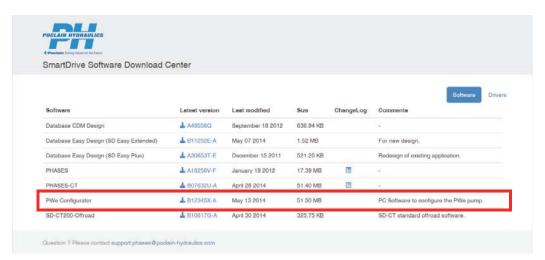
Configure the PWe pump functionalities.

Configuration module

Allows to adjust the PC software.

PWe Configurator installation

Required elements


Before proceeding to installation, ensure that you have the following items:

- · PC equipped with:
 - Processor: 2 GHz minimum
 - Memory (RAM): 2 GB minimum
 - Hard disk: 200MB free space
 - Windows 7
 - Colour monitor with minimum resolution of 1024 x 768

Download procedure

You can download the last version of PWe Configurator on the web page:

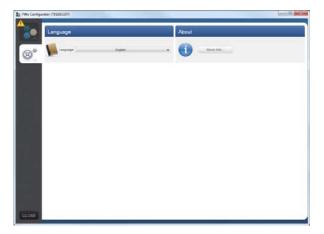
http://phases.poclain-hydraulics.com/downloadcenter

Software installation procedure

- · Close all active programs and deactivate any antivirus that may be running on the PC. Only Windows must be running.
- Run the executable software you download from the website and follow instructions.
- Restart the computer if it is requested.

21/04/2016 47

Initial use and configuration


To launch PWe ECU configurator double click on desktop icon created during installation or use the start menu.

· The main screen will be displayed (see opposite).

Proceed as follows:

- · In the side menu bar click on "Configuration" or press "F2" to display the configuration screen.
- · Choose desired language from the collapsible menu.

Model

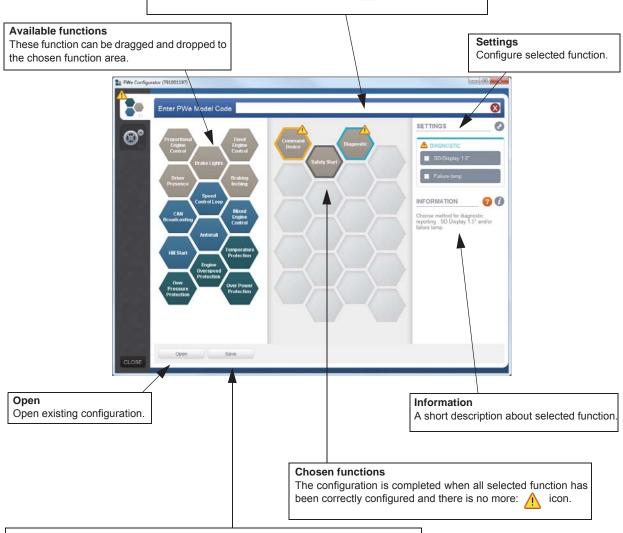
recnnicai vecifications

Operating Parameters

System design Parameters

Controls

Description of functions

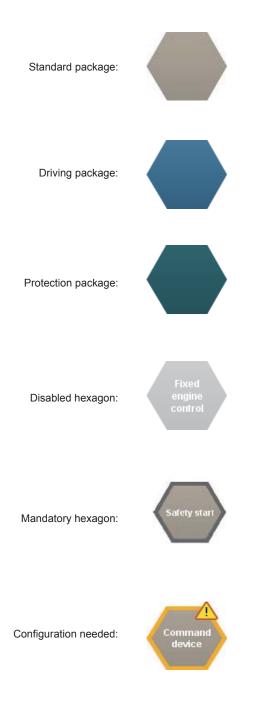

Honeycomb

The honeycomb screen is automatically displayed when the software starts-up.

- 1. Enter the model code.
- 2. Choose and set your functions.
- 3. Save your configuration.

Model Code

Enter the model code of your PWe pump into this text field. Model code can be tipped using keyboard or directly pasted from clipboard. When the model code is complete the icon change


Save

Save current configuration as ".des" file for partial configuration or ".ct" file for complete configuration. ".ct" file are used by PHASES CT to send configuration in PWe ECU.

21/04/2016 49

Packages

The color of hexagons determines in which packages they are available:

Selected / Under configuration:

Model

Technical specifications

Operating Parameters

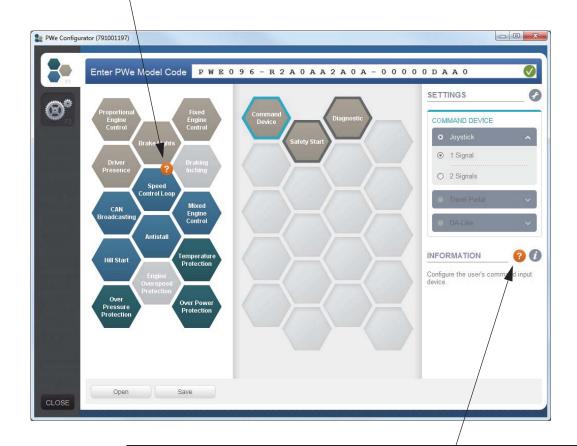
System design Parameters

Features

Hexagon signification

Hexagon concered by configuration (not chosen):

Hexagon concered by configuration (chosen):



Help

Documentation about functions is available by clicking on the ? icons

Help icon

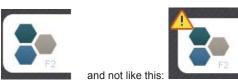
This help icon opens documentation about the clicked function in the available function area.

Help icon

This help icon opens documentation about the function selected in the chosen function area.

File generation

PWe Configurator can generate two types of files:


- ".des" is generated when the configuration is not complete. This file can be used to save and load partial configuration including model code, function activated and options selected. This file cannot be used with PHASES CT to configure the PWe pump.
- ".ct" is generated when the configuration is complete. This file can be used to save and load configuration including model code, function activated and options selected. Use this file with PHASES CT to configure the PWe pump.

The configuration is completed when the model code entered is completed and to act:

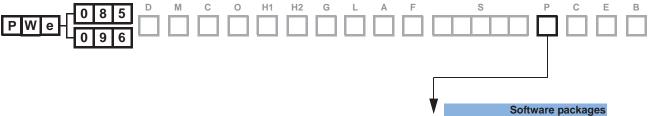
Model code not completed:

When the model code is complete and design is complete:

honeycomb button has to be like this:

Configuration module

In the configuration module it's possible to change language and display part numbers (PN).


To see part numbers of PC software and database proceed as follows:

- · In the side menu bar click on **{Configuration}** or press **<F2>** to display the configuration screen.
- Click on [More info...]. Desired information are displayed in opened window.

PWE PACKAGE DESCRIPTION

Acronym	Definition
ECU	Electronic control unit
CAN	Control Area Network (high speed serial communication bus)
EMC	Electromagnetic compatibility
I/O	Input/Output
J1939	Standard SAE CAN - protocol for agricultural vehicle
SD	Poclain Hydraulics transmission controller
TP	Travel pedal
LimpMode	Minimum drive while failure

Software packages A Standard package B Standard + Driving packages C Standard + Protection packages Standard + Driving + Protection packages E CAN slave

List of functions

Standard package

Start-up check (1)

Command device (travel pedal, joystick or DA-Like) (1) (2)

Proportional engine control

Fixed engine control (adjustable by Display 1.5")

Driver presence

Brake lights

Braking/Inching management

Diagnostic (by failure lamp or Display 1.5") (1) (3)

Driving package

Antistall

Hill start

CAN broadcasting

Speed control loop (mode deactivable by Display 1.5")

Mixed (Automotive or Fixed) engine control (change by Display 1.5")

Protection package

Overpressure protection

Overpower protection

Engine overspeed protection

Temperature protection

CAN slave

- (1) Functions activated by default.
- (2) By default, command device selected in the model code is 1 signal device with F/R direction switches (in case of travel pedal).
- (3) By default, diagnostic is done with failure lamp.

Mode

Technical specifications

Operating Parameters

System design Parameters

Features

Controls

PWe installation

PWe package

Options

53

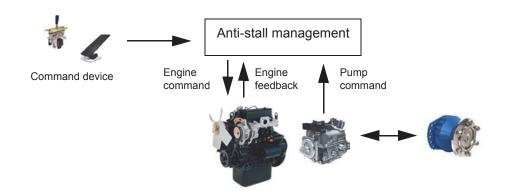
Anti-stall

Aim of the function

Prevents the engine from stalling.

Description

PWe ECU monitors engine speed.


- · When engine speed is lower than expected, PWe ECU reduces pump displacement, thus torque needed by pump.
- · When engine speed is back to its expected value, PWe ECU gently drives the pump to recover driver command.

Ergonomics

Driver uses standard joystick or pedal to require machne to move.

Inputs/Outputs

• CAN Bus

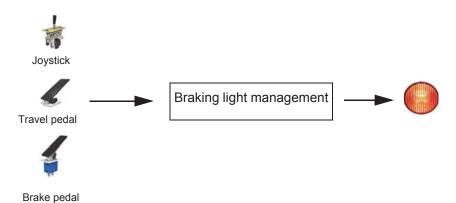
Brake lights

Aim of the function

Switches on and off the brake lights.

Description

PWe ECU monitors machine acceleration and deceleration and - if appropriate - the braking command. When deceleration overpasses defined level or when driver braking request is detected, PWe ECU switches on the brake lights.


PWe ECU switches off the brake lights when deceleration is lower than defined level and when there is no more driver braking request.

Ergonomics

Driver uses standard joystick, pedal or DA-like, and if present the braking pedal, to drive the machine. When appropriate, PWe ECU switches on the brake lights.

Inputs/Outputs

- Driver command interface: Joystick, pedal or DA-like, brake pedal input if present.
- 1 digital output to drive brake lights relay.

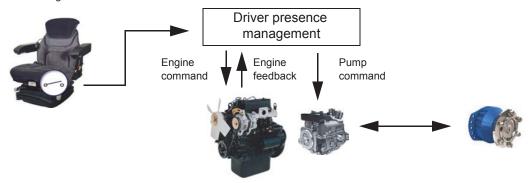
Driver presence

Aim of the function

Check that driver is present. Stop the machine if needed.

Description

PWe ECU checks that driver is present thanks to a seat switch.


When PWe ECU detects that driver is not on the seat, PWe ECU stops the machine.

Ergonomics

When driver leaves his seat, machine stops accordingly to a parameter defined ramp. If driver is back before machine has stopped, to avoid machine acceleration, brake security loop is engaged. The operator will first have to bring the joystick or travel pedal back to the position matching the current vehicle speed to recover the full control of the speed.

Inputs/Outputs

• 1 digital input for reading the seat switch.

Temperature protection

Aim of the function

Protect the hydrostatic transmission against over temperature to preserve components lifetime.

Description

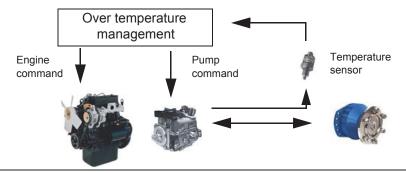
PWe ECU monitors temperature in transmission.

When temperature overpass a limit defined with a parameter, PWe ECU reduces machine speed to recover acceptable temperature.

Machine speed reduction is managed thanks to: • A reduction of the pump displacement.

· A reduction of the engine command.

The reduction ratios values are set by parameters.


Ergonomics

When system recovers acceptable temperature, reduction of machine speed is not more needed.

To avoid machine acceleration a brake security loop is engaged. The operator will first have to bring the joystick or travel pedal back to the position matching the current vehicle speed to recover the full control of the speed.

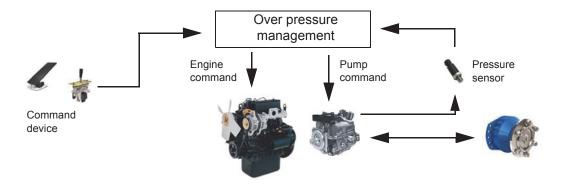
Inputs/Outputs

• 1 analog input to read temperature sensor.

Over pressure protection

Aim of the function

Check that driver is present. Stop the machine if needed.


Description

PWe ECU monitors pressure delivered to the transmission.

When pressure overpass the limit defined with a parameter, PWe ECU reduces pump displacement to recover acceptable pressure. It works in the same way as hydraulic flow cancellation (lpor valve).

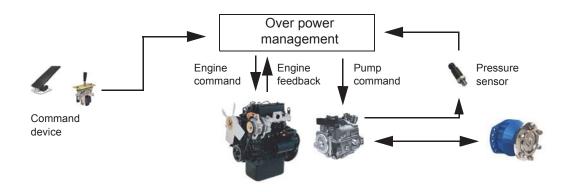
Inputs/Outputs

- 1 analog input to read the pressure sensor in the hydraulic circuit.
- 1 analog input to read the pressure sensor on reverse line of the hydraulic circuit.

Over temperature protection

Aim of the function

Protect the hydrostatic transmission against overpower.


Description

PWe ECU monitors pressure and pump speed to compute power delivered to the transmission.

When power overpass the limit defined with a parameter, PWe ECU reduces pump displacement to recover acceptable power. In case of multiple motors displacement configurations, one limit will be defined for each motors displacement with parameters. Over power protection is active in forward and reverse: Two pressure sensors and one engine/pump speed sensor are needed.

Inputs/Outputs

- 1 analog input to read the pressure sensor in the hydraulic circuit.
- 1 analog input to read the pressure sensor on reverse line of the hydraulic circuit.
- CAN Bus or 1 frequency input for pump speed sensor.

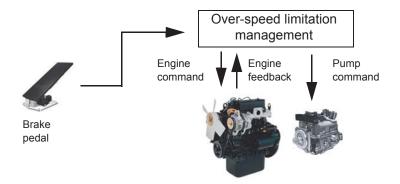
Engine over speed protection

Aim of the function

Protect the engine against overspeed.

Description

PWe ECU monitors motor/pump speed.


When engine speed overpass a limit defined with a parameter, PWe ECU will limit hydrostatic deceleration to recover acceptable engine speed.

Ergonomics

According to engine speed, ramp of deceleration will be adjusted (time to decelerate is increased) to limit hydrostatic deceleration. Deceleration will be automatically adjusted to the engine braking performances whatever is the slope or the load of the machine. To ensure that the driver will be able to stop the machine, a braking device is mandatory (braking/inching or combined braking).

Inputs/Outputs

- CAN Bus or 1 frequency input for pump speed sensor.
- 1 analog input for braking pressure sensor or braking pedal sensor.

Diagnostic

Aim of the function

Give driver feedback on transmission status.

Description

PWe ECU detects errors on the system and informs the user.

Ergonomics

Two configurations:

Failure lamp:

- · Blinking in case of error.
- Display:
- · Displays error code and cause.
- Displays transmission information (speed, power, ...).

Inputs/Outputs

- 1 digital output for failure lamp.
- · CAN bus for display.

21/04/2016 57

Command device

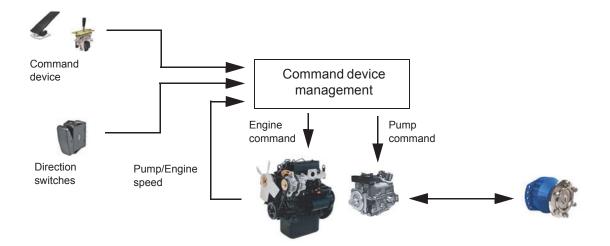
Aim of the function

Define user ergonomics.

Ergonomics

• Travel pedal (1 signal or 2 signals for redundancy) associated with forward/reverse direction switches or forward/neutral/reverse direction switches (for redundancy).

Possibility to select: • Joystick (1 signal or 2 signals for redundancy).


• DA-like (pump speed defines pump displacement). A braking is mandatory to ensure deceleration if engine stays at high

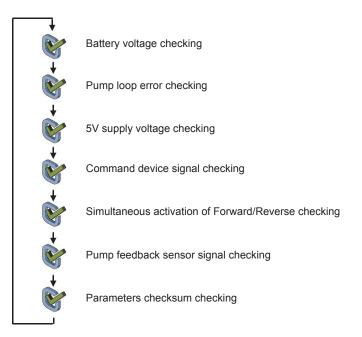
Inputs/Outputs

Joystick:	 1 analog input to read the joystick or 2 analog inputs for redundancy.
JOYSHCK.	1 digital input for joystick neutral switch.
Travel pedal:	1 analog input to read the travel pedal or 2 analog inputs for redundancy.
	 2 digital inputs for forward/reverse or 3 digital inputs for forward/neutral/reverse.
	• 1 frequency input for pump speed sensor.

DA-like:

• 2 digital inputs for forward/reverse or 3 digital inputs for forward/neutral/reverse.

Start-up check


Aim of the function

Ensure that all conditions are valid before making machine move after a powering up.

Ergonomics

Ensures that after PWe ECU powering up, embedded software checks PWe ECU supply voltage, internal supply voltage, command device, direction switches, pump feedback and parameters values (all at the same time).

Ensures that after PWe ECU powering up, command device is seen at 0% and the direction switches are in neutral (all at the same time).

Check of battery voltage

An error occurs if battery voltage is below 9V or above 30V.

Pump loop error

An error occurs in case of difference between pump command and real displacement of the pump based on calculation using pump feedback sensor. The machine stops.

Check of 5V supply

An error occurs if the 5V supply provided by the PWe ECU is below 4.8V or above 5.2V. The machine stops.

Check Travel pedal or Joystick pedal

An error occurs if the signal from Travel Pedal or Joystick is below 0.25V or above 4.75V. The machine stops.

Simultaneous activation of Forward, Neutral and Reverse switches

These actions are done when two switches (or more) are in the same state:

- Error activation on direction switches

- · Deceleration of machine according ramp.

Check of pump feedback sensor signal

An error occurs if the signal from the feedback sensor is below 0.25V or above 4.75V. The machine stops.

Check of parameters checksum

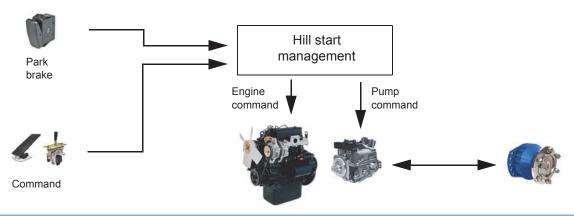
An error occurs in case of parameter checksum or calibration value checksum. Then machine stay at stop.

Hill start

Aim of the function

Prevent any rollback when starting in a slope.

Description


PWe ECU makes a jump on pump displacement to compensate leakages due to slope.

Ergonomics

To activate hill start, driver must apply the park brake, provide a command device and then remove park brake.

Inputs/Outputs

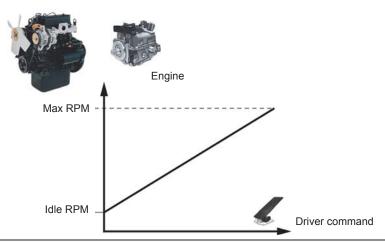
- 1 analog input for Travel pedal or Joystick.
- 1 digital input for the park brake.

Proportional engine control

Aim of the function

Drive engine speed proportionally to the command device.

Description


Engine is controlled from minimum to maximum speed (parameters) proportionally to command device position.

Ergonomics

Driver uses command device to manage pump displacement and engine speed simultaneously.

Inputs/Outputs

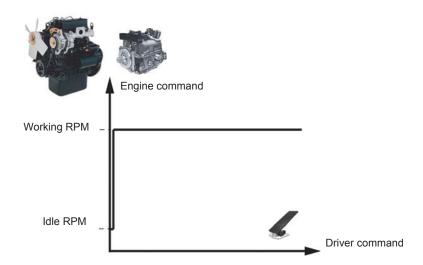
- CAN bus for engine (J1939 protocol).
- · Command device: joystick or pedal.

Fixed engine control

Aim of the function

Machine translation is managed with fixed engine speed.

Description


When driver requests the machine to move, PWe ECU drives the engine from idle speed to fixed speed. PWe ECU adjust machine speed with pump displacement only. After machine stops, PWe ECU waits for a parameter defined delay, then drives the engine speed to its idle speed.

Ergonomics

- Driver uses standard joystick or pedal to require machine to move.
- Driver uses a display to set the desired speed for fixed engine control.

Inputs/Outputs

- Command device: joystick or pedal.
- CAN bus for engine (J1939 protocol).
- · CAN bus for display.

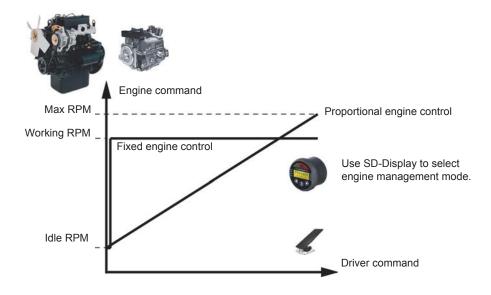
Mixed engine control

Aim of the function

Possibility for driver to select fixed engine control or a proportional engine control.

Description

- Fixed engine control: when driver requests the machine to move, PWe ECU drives the engine from idle speed to fixed speed. PWe ECU adjusts machine speed with pump displacement only. After machine stops, PWe ECU waits for a parameter defined delay, then drives the engine speed to its idle speed.
- Proportional engine control: engine is controlled from minimum to maximum speed (parameters) proportionally to command device position.


Ergonomics

Driver uses display to select between fixed engine control and proportional engine control.

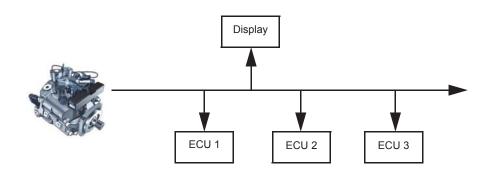
- · For proportional engine control: driver uses command device to set machine and engine speed simultaneously.
- · For fixed engine control: driver uses standard joystick or pedal to require machine to move and uses a display to set the desired speed.

Inputs/Outputs

- · Command device. joystick or pedal.
- CAN bus for engine (J1939 protocol).
- · CAN bus for display.

CAN broadcasting

Aim of the function


Send transmission information through CAN bus for driver display and diagnostic purpose.

Description

Send transmission information accordingly to J1939:	Pump command
	Pump flow
	Pump speed
	Driver command
	Brake command
	Inching command
	High pressure A
	High pressure B
	Machine speed
	Mode
	Direction
	Power
	Over power protection status
	Over pressure protectin status
	Anti-stall status
	Engine overspeed status
	Speed control loop status
	Temperature protection status
	Error codes

Inputs/Outputs

• CAN bus (J1939 protocol).

CAN Bus J1939 standard

This function builds CAN Bus frames following J1939 standard and puts these frames on the bus. These frames can be read by customer's CAN bus display. These frames are sent each 40ms ne frame, so 5 frames are repeated each 200ms. Sending of these frames can be disabled/enabled by parameter "CAN_J1939".

PH SPN	Signal Name	Representation	Length	Limits (Range)	Notes
0	Pump1 Command	Н	2 bytes	0 to 65535 cc	
1	Pump2 Command	Н	2 bytes	0 to 65535 cc	Not used
2-4	reserved				
5	Pump1 flow	A	3 bytes	0 to 838860,8 L/h 0 to 13981,01 L/min	
6	Pump2 flow	A	3 bytes	0 to 838860,8 L/h 0 to 1981,01 L/min	Not used
7-9	reserved				
10	Pump1 speed	D	2 bytes	0 to 8191,87 rpm	
11	Pump2 speed	D	2 bytes	0 to 8191, 87 rpm	Not used
12-14	reserved				
15-19	reserved				
20	Driver command	В	1 byte	-100 to 100 %	
21-24	reserved				
25	Brake command	В	1 byte	-100 to 100 %	
26-29	reserved		-		
30	Inching command	В	1 byte	-100 to 100 %	
31-34	reserved		,		
35-39	reserved				
40	High pressure A	С	2 bytes	0 to 1 048 560 kPa 0 to 10 485,6 bar	
41	High pressure B	С	2 bytes	0 to 1 048 560 kPa 0 to 10 485,6 bar	
42-49	reserved				
50	Machine speed measured		2 bytes	0 to 255,99 km/h	Not used
51	Machine speed flov	v G	2 bytes	0 to 255,99 km/h	
52-59	reserved				
60	Mode	J	4 bits	Transmission: 0 = Neutral 1 = Work mode 2 = Road mode Assist: 0 = Freewheel 1 = Assist 2 = Creep CDM: 0 = Freewheel 1 = Creep	Not used
61	Actual gear	E	4 bits	0 = Undefined 1 = Gear 1 2 = Gear 2 15 = Gear 15	Not used
62	Direction F/N/R	I	2 bits	0 = Neutral 1 = Forward 2 = Reverse 3 = Not available	
63	Limp mode code	K	1 byte	0 to 255	Not used
64	Limp mode activation	I	2 bits	0 = Not Active 1 = Active 2 = Not defined 3 = Not available	Not used
65	Power level 1	F	2 bytes	0 to 32 767,5 kW	
66	Power level 2	F	2 bytes	0 to 32 767,5 kW	
67-69	reserved				

Model

Technical specifications

Operating Parameters

System design Parameters

Features

2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available
1 byte	0 = No error 1-255 = Active Error code
	2 bits

PGN definitions

i Oit acimilions								
Name	Identifier (Hex)	Byte	Bit	Comment/ Parameter	PH SPN	Length of resolution	Operating data range	Notes
	18 FF 80 xx	1-2		Pump1 Command	0	1 cc/bit	0 to 65 535 cc	
DL 1	(P=6 PGN = 65408	3-5		Pump1 flow	5	0.05 L/h per bit	0 to 838 860,8 L/h	
PH_1		6-7		Pump1 speed	10	0.125 rpm/bit	0 to 8 191,87 rpm	
	SA = xxh)	8		Not used			0xFF	
	18 FF 81 xx	1-2		Pump2 Command	1	1 cc/bit	0 to 65 535 cc	Not used
DL 2	(P=6	3-5		Pump2 flow	6	0.05 L/h per bit	0 to 838 860,8 L/h	Not used
PH_2	PGN = 65409	6-7		Pump2 speed	11	0.125 rpm/bit	0 to 8 191,87 rpm	Not used
	SA = xxh)	8		Not used			0xFF	

Name	Identifier (Hex)	Byte	Bit	Comment/ Parameter	PH SPN	Length of resolution	Operating data range	Notes
		1		Driver command	20	0.8 %/bit offset: -100%	-100 to 100%	
		2		Brake command	25	0.8 %/bit offset: -100%	-100 to 100%	
		3		Inching command	30	0.8 %/bit offset: -100%	-100 to 100%	Not used
			1-2	Power limitation 1 activated	70	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	
		4	3-4	Power limitation 2 activated	71	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	
		7	5-6	Pressure limitation 1 activated	75	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	
			7-8	Pressure limitation 2 activated	76	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	
	18 FF 82 xx (P=6		1-2	Torque limitation 1 activated	80	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	Not used
PH_3	PGN = 65410 SA = xxh)	5	3-4	Torque limitation 2 activated	81	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	Not used
		5	5-6	Antistall activated	85	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	Not used
			7-8	Engine overspeed activated	86	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	
			1-2	Speed loop activated	87	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	
		6	3-4	Temperature security status	88	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	
			5-6	Not used		2 bits	11b	
			7-8	Not used		2 bits	11b	
		7		Active error codes	90	1 byte	0 = No error 1-255 = active error code	
		8		Not used			0xFF	

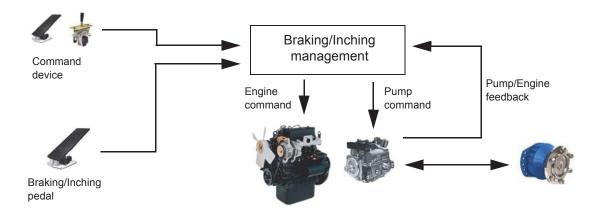
Name	Identifier (Hex)	Byte	Bit	Comment/Parameter	PH SPN	Length of resolution	Operating data range	Notes
		1-2		Machine speed measured	50	1/256 km/h per bit	0 to 255,99 km/h	Not used
		3-4		Machine speed flow	51	1/256 km/h per bit	0 to 255,99 km/h	
	40.55.00	5	1-4	Mode	60	4 bits	Transmission: 0 = Neutral 1 = Work mode 2 = Road mode Assist: 0 = Freewheel 1 = Assist 2 = Creep CDM: 0 = Freewheel 1 = Creep	Not used
PH_4	18 FF 83 xx (P=6 PGN = 65411 SA = xxh)	l	5-8	Actual gear	61	4 bits	0 = Undefined 1 = Gear 1 2 = Gear 2 15 = Gear 15	Not used
		6	1-2	Direction (F/N/R)	62	2 bits	0 = Neutral 1 = Forward 2 = Reverse 3 = Not available	
			3-4	Limp mode activated	64	2 bits	0 = Not active 1 = Active 2 = Not defined 3 = Not available	Not used
			5-8	Not used		4 bits	1111b	
		7		Limp mode code	63	8 bits	0 to 255	Not used
		8		Not used			0xFF	
	18 FF 84 xx	1-2		High pressure A	40	16 kPa/bit	0 to 1 048 560 kPa 0 to 10 485,6 bar	
PH_5	(P=6 PGN = 65412	3-4		High pressure B	41	16 kPa/bit	0 to 1 048 560 kPa 0 to 10 485,6 bar	
	SA = xxh)	5-6		Power level 1	65	0.5 kW/bit	0 to 32 767,5 kW	
		7-8		Power level 2	66	0.5 kW/bit	0 to 32 767,5 kW	

Braking/Inching management

Aim of the function

- Provide hydrostatic braking according to driver request (braking function).
- Provide inching, reduced machine speed, according to driver request (inching function).

Description


- Braking: PWe ECU manages hydrostatic braking (m/s²) proportionally to braking/inching pedal position.
- Inching: PWe ECU manages requested machine speed thanks to: *command device position x (1 braking/inching pedal position).*First part of pedal range is used for inching and second part for braking. Pedal position to switch from inching to braking is adjustable by parameter.

Ergonomics

- When using braking, machine decelerates until stop. When releasing braking/inching pedal before machine stop, the driver will first have to bring the joystick or travel pedal back to the position matching the current vehicle speed to recover the full control of the speed.
- When using inching, machine speed is reduced according to braking/inching pedal position, following standard deceleration ramp. When inching is released, machine recovers original speed following standard acceleration ramp.

Inputs/Outputs

- 1 analog input or 2 analog inputs (for redundancy) to read braking/inching pedal position.
- CAN bus for 1 frequency input for pump speed sensor.

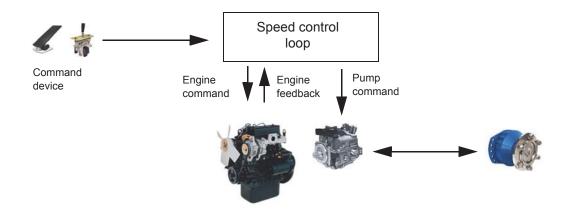
installation

Speed control loop

Aim of the function

Provide constant machine speed whatever the engine speed.

Description


PWe ECU monitors engine speed and adjusts pump displacement to keep constant machine spped (according to command device position).

Ergonomics

Driver must use display to activate the function. If not activated, engine speed can change machine speed.

Inputs/Outputs

- CAN bus or 1 frequency input for reading the speed of engine/pump.
- CAN bus for display.
- Command device: joystick or pedal.

CAN slave management

Usage sum up

CAN communication used by CAN slave is matching J1939 communication rules and frame definition. Used PGN are defined within customer specific ID range.

To command the pump, following data are required:

- Pump direction (Neutral, direction A or direction B)
- Pump enable (Active or not)
- Pump command (in cc, with ramp management following parameter)

To improve safety of the command sent to the PWe pump throughout CAN bus, there is a counter that should be incremented each time a new can frame is transmitted. This counter is 8bits long and is free running. It will return to 0 after 255. A second message will be sent as redundancy purpose, it will contain one complemented data from main command frame. PWe ECU will check consistency between main and redundancy CAN frame. In case of recurrent discrepancy PWe pump will enter in safe mode and bring pump back to neutral.

Conditions of CAN communication that can stop the pump:

- If main or redundant messages are missing for 0.5s, pump will go back to neutral following a specific ramp (1.5s).
- If main and redundant messages are inconsistent 3 times (consecutively) pump will go back to neutral following a specific ramp (1.5s).
- If counter of main message isn't increasing, pump will go back to neutral following a specific ramp (1.5s).

To ensure that redundant message will not be received before main message, redundant message will be sent at least 10ms after main message.

After pump start-up an initial condition must be observed regarding the pump command to be able to stroke the pump. This initial condition must be:

- Pump command = 0cc
- Pump enable = FALSE
- Pump direction = Neutral

To inform master PWe ECU of transmission condition pump will send CAN frames containing pressure, speed, temperature information. Those information will be transmitted in two ways:

- Physical values, computed using parameters value defining sensor characteristics.
- Electrical values that are direct RAW reading. Master PWe ECU will have to compute by its own physical values based on its own parameters. Master PWe ECU will also have to take care of signal range validity to detect sensor disconnection

Parametres dedicated to CAN slave communication

Name	Rate of PHPI messages
Description	Define the transmission period for PHPIx messages.
Min. value	0,01s
Max. value	0,20s
Name	Rate of PHPC messages and pump control tasks.
Description	Define the typical period for PHPCx messages.
Min. value	0,01s
Max. value	0,10s
Name	Ramp of deceleration in case of fault
Description	Define the ramp used to bring the pump back to neutral when CAN communication is lost with master PWe ECU. This parameter defines time in s taken to bring the pump from full displacement to neutral. (I.e. if the pump was stroked to half displacement when the fault occurred, it will take half the specified time to get back to neutral).
Min. value	0,5s
Max. value	6553,4s
Name	Wait for 1st valid command after powerUP.
Description	Define the initial time allowed after PWe pump power up to start communication with master PWe ECU. This is intended to let time to master PWe ECU to boot up and start CAN communication without triggering errors.
Min. value	0,1s
Max. value	30s

 Name
 Own J1939 address in Slave

 Description
 J1939 address of PWe ECU

 Min. value
 0

 Max. value
 255

Name J1939 address of commander

Description J1939 address of master PWe ECU

Min. value 0

Max. value 255

Details of CAN messages

INPUTS (Master to PWe pump):

POCLAIN HYDRAULICS PUMP COMMAND#1 (PHPC1) - PGN 61184 (Transmission rate: 10 - 100ms):

Name	Identifier (Hex)	Byte	Bit	Comment/Parameter	SPN	Length or resolution	Operating data range
		1		Data index		1 byte	01h = pump command
		2	1-2	Pump direction		2 bits	00b = Neutral 01b = Direction A 10b = Direction B 11b = Not defined (Neutral)
PHPC1	18 EF yy xx (P=6 PGN=61184 DA = yyh SA = xxh)	ŠN=61184 3-4 /h		Pump enable		2 bits	00b = Not activated 01b = Activated 10b = Not defined (Not activated) 11b = Not defined (Not activated)
			5-8	Not used	N/A		1111b
		3-4		Pump command		2 bytes 1/10 th cc	0.0 to 6553.4 cc
		5-6		Not used		2 bytes	FFFFh
		7		Not used		1 byte	FFh
		8		Command message counter		1 byte	0 to 255

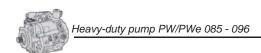
In the following message, the ~ means Complement to 1. For example: ~ PHPC1.byte8 =0xFF - PHPC1.byte8.

POCLAIN HYDRAULICS PUMP COMMAND#2 (PHPC2) - PGN 61184

(Transmission rate: 10 - 100ms):

Name	Identifier (Hex)	Byte	Bit	Comment/Parameter	SPN	Length or resolution	Operating data range
		1		Data index		1 byte	02h = pump command redundancy
	10 55 24204	2		Data index		1 byte	= ~PHPC1.byte8
	18 EF yy xx (P6=6	3		Redundant signal		1 byte	= ~PHPC1.byte7
PHPC2	(4		Redundant signal		1 byte	= ~PHPC1.byte6
	DA = yyh	5		Redundant signal		1 byte	= ~PHPC1.byte5
	SA = xxh)	6		Redundant signal		1 byte	= ~PHPC1.byte4
		7		Redundant signal		1 byte	= ~PHPC1.byte3
		8		Redundant signal		1 byte	= ~PHPC1.byte2

- For those messages DA value comes from "Own J1939 address in Slave" parameter.
- For those messages SA value comes from "J1939 address of commander" parameter.


Care must be taken to compute PHPC2 message using the same input values than PHPC1.

Example of CAN messages:

Pump commanded in direction A:

2 0.005004	18EF1FEx	PHPC1	Tx	8	01 F5 00 00 FF FF FF A1
2 0.005048	18EF1FEx	PHPC2	Tx	8	02 5E 00 00 FF FF FF 0A

21/04/2016 71

Pump commanded in direction A @2.1cc:

2 0.005108	18EF1FEx	PHPC1	Tx	8	01 F5 15 00 FF FF FF E3
2 0.005401	18EF1FEx	PHPC2	Tx	8	02 1C 00 00 00 FF EA 0A

Pump commanded in direction A @3.2cc:

0.006000	18EF1FEx	PHPC1	Tx	8	01 F6 20 00 FF FF FF 2D
0.004028	18EF1FEx	PHPC2	Tx	8	02 D2 00 00 00 FF DF 09

OUTPUTS (PWe pump to master):

POCLAIN HYDRAULICS PUMP INFO#1 (PHPI1) - PGN 65386 (Transmission rate: 10 - 100ms [parameter, 100ms by default]):

Name	Identifier (Hex)	Byte	Bit	Comment/Parameter	SPN Length or resolution	Operating data range
		1-2		Pump displacement	2 bytes 1/10 th cc	0.00 to 6553.4 cc FFFFh = N/A
		3-4		Pump feedback voltage	2 bytes mV	0000 to 5200 mV FFFFh = N/A
		5-6		Drift voltage	2 bytes mV	-5200 to 5200 mV offset: RAW = mV + 5200 FFFFh = N/A
		7	1	Pump enabled isPumpOk() & pumpEnable_received	bool	0b = Pump disabled 1b = Pump enabled
		_	2	S1 connection error	bool	0b = Cnx OK 1b = Cnx fault
		_	3	S2 connection error	bool	0b = Cnx OK 1b = Cnx fault
		-	4	Cut-off connection error	bool	0b = Cnx OK 1b = Cnx fault
		_	5	By-pass connection error	bool	0b = Cnx OK 1b = Cnx fault
DUDIA	18 FF6Axx (P=6 PGN=65386 SA = xxh)	-	6	Loop error	bool	0b = Error not active 1b = Error active
PHPI1		_	7	Drift error	bool	0b = Error not active 1b = Error active
		_	8	FB error	bool	0b = Error not active 1b = Error active
		8	1	Pollution	bool	0b = No pollution 1b = Pollution
		-	2	General safe state	bool	0b = NoGSS 1b = GSS
			3-4	Pump direction	2 bits	00b = Neutral 01b = Direction A 10b = Direction B 11b = Not defined (Neutral)
			5	Initial frame received	N/A	0b = Frame not received 1b = Frame was received
		_	6	Communication error flag	ı N/A	0b = Error not active 1b = Error active
		_	7	Not used	N/A	1b
		_	8	Not used	N/A	1b

POCLAIN HYDRAULICS PUMP INFO#2 (PHPI2) - PGN 65387 (Transmission rate: 10 - 100ms [parameter, 100ms by default]):

Name	Identifier (Hex)	Byte Bit Comment/Parameter SPN		SPN Length or resolution	Operating data range
		1-2 Power suppl		2 bytes 1mV/bit	0000 to32000 mV
	10 5500	1-2	1 ower supply voltage		FFFFh = N/A
PHPI2	18 FF6Bxx (P=6 PGN = 65387	3-4	5V supply output	2 bytes 1 mV/bit	000000 to 5500 mV FFFFh = N/A
	SA = xxh)	5-6	Max. pump displacemen	t 2 bytes 1/10 th cc	0.0 to 6553.4 cc FFFFh = N/A
		7-8	Not used	2 bytes	FFFFh

[•] For those messages SA value comes from "Own J1939 address in Slave" parameter.

Other available outputs:

The pump can be equipped of sensors (temperature, pressure and speed). Their value will be send on the CAN bus. 2 types of information on the CAN bus:

- Physical value (in V or Hz)
- Calculated value (in bars or RPM or °C)

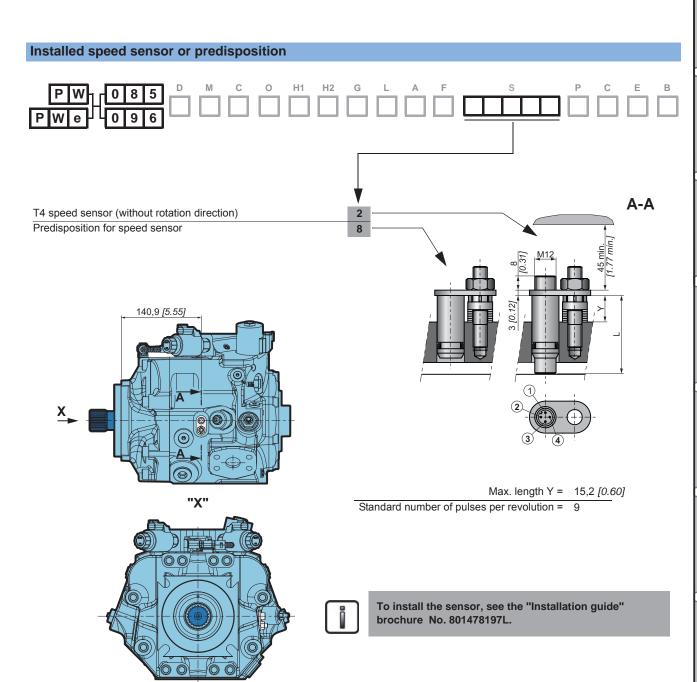
If the sensor voltage is out of valid range (0.5V – 4.5V), calculated value will be FFFFh. There is no management for sensors. With Phases we have possibility to modify sensor's parameter for pressure and temperature sensors (Bar/Volt, Degree/Volt,...).

POCLAIN HYDRAULICS PUMP INFO#3 (PHPI3) - PGN 65388 (Transmission rate: 10 - 100ms [parameter, 100ms by default]):

Name	Identifier (Hex)	Byte Bit	Comment/Parameter	SPN Length or resolution	Operating data range
		1-2	HPA pressure sensor voltage	2 bytes 1mV/bit	0000 to 5200 mV
PHPI3	18 FF6Cxx (P=6 PGN=65388 SA = xxh)	3-4	HPA pressure sensor	2 bytes 16kPa/bit	000000 to 100000 kPa FFFFh = signal not present
111113		5-6	HPB pressure sensor voltage	2 bytes 1mV/bit	0000 to5200 mV
		7-8	HPB pressure sensor	2 bytes 16kPa/bit	000000 to 100000 kPa FFFFh = signal not present

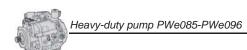
POCLAIN HYDRAULICS PUMP INFO#4 (PHPI4) - PGN 65389 (Transmission rate: 10 - 100ms [parameter, 100ms by default]):

Name	Identifier (Hex)	Byte Bit	Comment/Parameter S	SPN Length or resolution	Operating data range
		1-2	Speed sensor frequency	2 bytes 0,15 Hz/bit	0000 to 8500 Hz
		3-4	Speed sensor	2 bytes 0,125 RPM/bi	t 0000 to 5000 RPM
PHPI4	18 FF6Dxx (P=6	5-6	Temperature sensor voltage	2 bytes 1mV/bit	0000 to 5000 mV FFFFh = signal not present
	PGN=65389 SA = xxh)	7	Temperature sensor	1 byte 1°C/bit	-40°C to +210°C offset: RAW = °C + 40 FFFFh = signal not present
		8	Not used	1 byte	FFh


[•] For those messages SA value comes from "Own J1939 address in Slave" parameter.

del de

Technical specifications

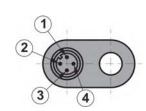

OPTIONS

T4 speed sensor specification

Commercial name	T4 SENSOR 12-44
Part number	A22082C
Lenght L	44 [1.73]
Function	Detect movements : rotation speed
Compatibility Electronic transmission management	

21/04/2016 75

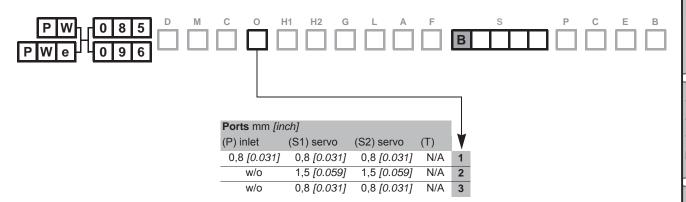
Installed speed sensor or predisposition


Features		
Supply voltage	8 - 30 V	
Output type	 - 1 push-pull square frequency signal - Maximum load current: 20 mA - Voltage at low state: < 1.5 V - Voltage at high state: > (power supply voltage - 3.5 V) 	
Maximum range	1.15 mm <i>[0.045"]</i>	
Current consumption	20 mA max.	
Frequency range	0 to 15 kHz	
Operating temperature	- 40°C to + 125°C [- 40°F to 257°F]	
Material	Stainless steel	
Protection rating	IP68 (sensitive side) / IP67 (connector side)	
Electrical protection	Reverse polarity	

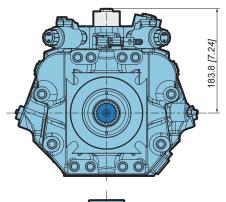
Signals are not protected against short circuit to ground or supply.

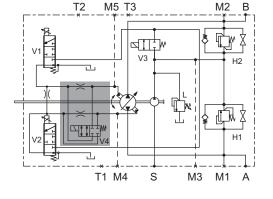
Connection of the speed sensor

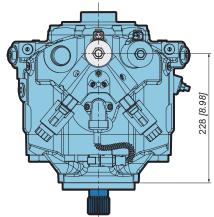
Remove the plastic plug on the connector.



Function	Pin number	
Power supply	1	
Not present	2	
Ground	3	
Square frequency signal	4	


For the connection of connectors, please refer to the connection table and the general cabling plan contained in the installation brochure for your transmission.

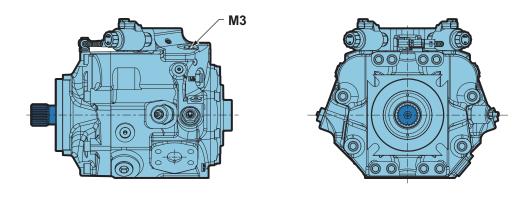

Electrical connections	90°	180°
Commercial name	ELEC-CABLE-M12-90°-5000	ELEC-CABLE-M12-180°-5000
Part number	A04999J	A07468S


By-pass of orifices in SA control

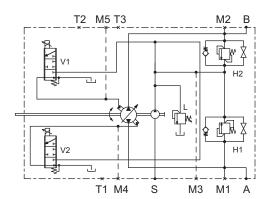
- Pump control optional function.
- Ensures fast pump response in normal working modes and in the same time ensures slow (safe) pump return to neutral position when it's required or in case of electronic failure.
- Size of orifices has to be defined based on the application.

Special paint or no paint

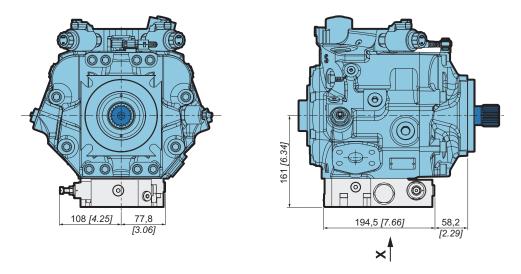
The pumps are delivered with Poclain Hydraulics black primer (RAL 9005) as standard.

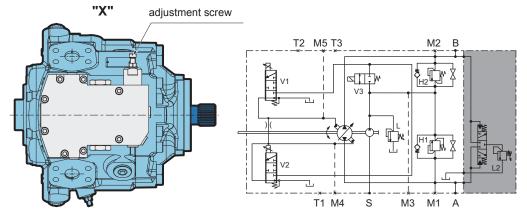


Consult your Poclain Hydraulics application engineer for other colors of primer or topcoat.


Without control pressure cut-off valve

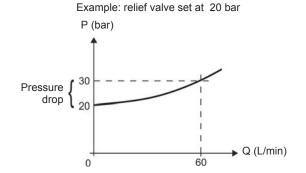
Control pressure cut-off valve is not mandatory for some specific applications where the pump is not used as main drive (e.g. assist drive).


Port	Function	Size	Norm
M3	Chargo proceuro	7/9 1/ LINE 2D	ISO 11026 1

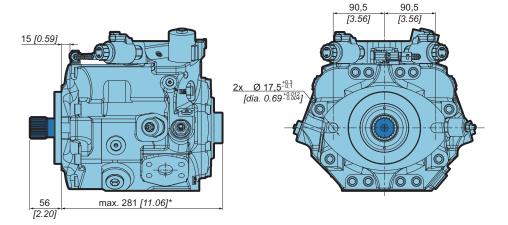


Exchange valve

Inside the pump cover, a purge valve can be fitted with discharge inside the pump casing by means of a calibrated hole. The exchange valve is useful in case the temperature of the oil in the closed circuit is too high.



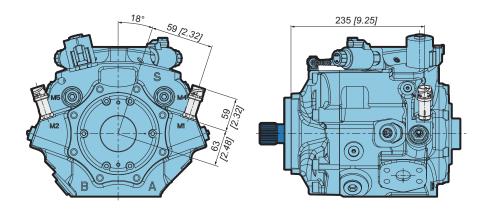
Setting of exchange valve should be approximately 3~5 bar [44~73 PSI] lower than for charge relief valve (see chapter "Charge pressure relief valve", page 20).


Consult with your Poclain Hydraulics application engineer for precise setting.

Specification	
Exchange valve adjustment range	18 to 30 bar [261 to 435 PSI]
Exchange flow (10 bar [145 PSI] ∆P)	60 L/min [15.85 gal/min]
Exchange direction	Forward and/or reverse

2-bolt bearing flange mounting&

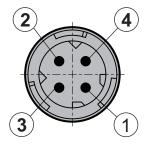
All length dimensions of pump body with different auxiliary mounting pads are shorter compare to standard 4-bolt flange of 14 mm [0.55 inch].



Bearing life and maximum overhung moment is significantly lower compare to 4 bolt flange, see page 16 for Bearing life (B_{10} hours) and page 17 for allowable moment values.

Pressure sensors on A&B lines

The pump can be equipped with 600 bar [8702 PSI] pressure sensors.

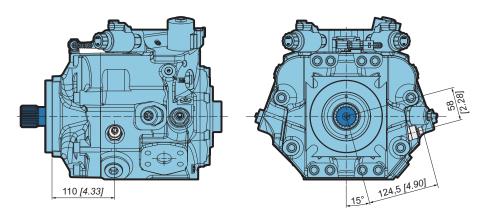


Pressure sensor specification

Commercial name	PRES-SENSOR-600B-G1/4-DIN
Part number	A53472W
Compatibility	Electronic transmission management

Pressure sensors on A&B lines

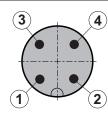
Features	
Supply voltage	5 V ± 0,5 V
Output signal	0,5 V ~ 4,5 V ratiometric
Pressure range	600 bar [8702 PSI]
Over pressure safety	1200 bar [17404 PSI]
Pressure connection with VITON rectangular seal	G 1/4" (DIN 3852-E)
Response time	< 5 ms
Accuracy	< 1%
	Medium - 40 °C to 125 °C [- 40 °F to 257 °F]
Using temperature range	Ambient - 40 °C to 100 °C [- 40 °F to 212 °F]
	Storage - 40 °C to 120 °C [- 40 °F to 248 °F]
Ingress protection	IP69K (IEC 60529)
CE conformity	EN 61326
Overvoltage and reverse polarity protection	± 30 V
Shock resistance	500 g according to DIN EN 837
Vibration resistance	20 g according to IEC 68-2
Electrical connection	DIN 72585, 4 pins



- 1: +5 VDC 2: Ground 3: Output signal 4: Not used

Temperature sensor

The pump can be equipped with analog temperature sensor.



Temperature sensor specification

Commercial name	TEMP-SENSOR-ANALOG-G1/4-M12	
Part number	A22147X	
Compatibility	Electronic transmission management	
Fonction	Measure the temperature of the hydraulic circuit	

Features		
Power supply	5V ± 0.5 V	
Output signal	0.5 V to 4.5 V radiometric Saturation at 0.4 V for temperatures < -23°C [- 9.4°F]	4,5
Response time	5 s	-
Accuracy	±1.5% FS from -20°C [-4°F] to 0°C [32°F] ±1% FS from 0°C [32°F] to 120°C [248°F]	0,5
Permissible pressure	750 bar [10 877 PSI]	-23 -20 120
Using temperature range	-20 to +120°C [-4 to +248°F]	
Housing material	Inox 304	
Ingress protection	IP67	
Electrical protection	- Over voltage: 30 V - Reverse polarity, - Short circuit.	
Shock resistance	1m 3 axes	
Vibration resistance	20 g	

Electrical connection	90°	180°
Commercial name	ELEC-CABLE-M12-90°-5000	ELEC-CABLE-M12-180°-5000
Part No.	A04999J	A07468S

1: nc 2:+5 V 3: Output signal 0,5 ~ 4,5 V 4: 0 V (Ground)

82 21/04/2016

Model Code

Technical specifications

Operating Parameters

System design Parameters

Features

Controls

Poclain Hydraulics reserves the right to make any modifications it deems necessary to the products described in this document without prior notification. The information contained in this document must be confirmed by Poclain Hydraulics before any order is submitted.

Illustrations are not binding.

The Poclain Hydraulics brand is the property of Poclain Hydraulics S.A.

